重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Combining WGCNA and machine learning to identify mechanisms and biomarkers of ischemic heart failure development after acute myocardial infarction

心肌梗塞 心脏病学 心力衰竭 重症监护医学 内科学 医学
作者
Yan Li,Ying Hu,Feng Jiang,Haoyu Chen,Yitao Xue,Yiding Yu
出处
期刊:Heliyon [Elsevier]
卷期号:10 (5): e27165-e27165 被引量:7
标识
DOI:10.1016/j.heliyon.2024.e27165
摘要

BackgroundIschemic heart failure (IHF) is a serious complication after acute myocardial infarction (AMI). Understanding the mechanism of IHF after AMI will help us conduct early diagnosis and treatment.MethodsWe obtained the AMI dataset GSE66360 and the IHF dataset GSE57338 from the GEO database, and screened overlapping genes common to both diseases through WGCNA analysis. Subsequently, we performed GO and KEGG enrichment analysis on overlapping genes to elucidate the common mechanism of AMI and IHF. Machine learning algorithms are also used to identify key biomarkers. Finally, we performed immune cell infiltration analysis on the dataset to further evaluate immune cell changes in AMI and IHF.ResultsWe obtained 74 overlapping genes of AMI and IHF through WGCNA analysis, and the enrichment analysis results mainly focused on immune and inflammation-related mechanisms. Through the three machine learning algorithms of LASSO, RF and SVM-RFE, we finally obtained the four Hub genes of IL1B, TIMP2, IFIT3, and P2RY2, and verified them in the IHF dataset GSE116250, and the diagnostic model AUC = 0.907. The results of immune infiltration analysis showed that 8 types of immune cells were significantly different in AMI samples, and 6 types of immune cells were significantly different in IHF samples.ConclusionWe explored the mechanism of IHF after AMI by WGCNA, enrichment analysis, and immune infiltration analysis. Four potential diagnostic candidate genes and therapeutic targets were identified by machine learning algorithms. This provides a new idea for the pathogenesis, diagnosis, and treatment of IHF after AMI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qrwyqjbsd应助lulu采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
行寂静行完成签到 ,获得积分10
刚刚
微笑的溪流完成签到,获得积分20
1秒前
cyy1226发布了新的文献求助10
1秒前
古城小街发布了新的文献求助10
1秒前
kg5g完成签到,获得积分10
1秒前
酷波er应助Lee采纳,获得10
1秒前
Wenxianxiazai77完成签到,获得积分10
1秒前
2秒前
酷波er应助老实su采纳,获得10
2秒前
mjc秋发布了新的文献求助10
3秒前
Tangtang发布了新的文献求助10
3秒前
3秒前
3秒前
wjy发布了新的文献求助10
3秒前
潘潘发布了新的文献求助10
3秒前
4秒前
4秒前
搜集达人应助Mmmmm采纳,获得10
4秒前
周周发布了新的文献求助10
4秒前
4秒前
EKKO完成签到,获得积分10
4秒前
4秒前
SciGPT应助肖的花园采纳,获得10
4秒前
Owen应助香蕉若风采纳,获得30
4秒前
共享精神应助zyy采纳,获得10
5秒前
CS发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
乐观半凡发布了新的文献求助10
6秒前
6秒前
橙子发布了新的文献求助10
7秒前
汀沐完成签到 ,获得积分10
7秒前
orixero应助牛牛牛采纳,获得10
7秒前
大个应助wwwwww采纳,获得10
7秒前
寒生发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567