Combining WGCNA and machine learning to identify mechanisms and biomarkers of ischemic heart failure development after acute myocardial infarction

心肌梗塞 心脏病学 心力衰竭 重症监护医学 内科学 医学
作者
Yan Li,Ying Hu,Feng Jiang,Haoyu Chen,Yitao Xue,Yiding Yu
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (5): e27165-e27165 被引量:7
标识
DOI:10.1016/j.heliyon.2024.e27165
摘要

BackgroundIschemic heart failure (IHF) is a serious complication after acute myocardial infarction (AMI). Understanding the mechanism of IHF after AMI will help us conduct early diagnosis and treatment.MethodsWe obtained the AMI dataset GSE66360 and the IHF dataset GSE57338 from the GEO database, and screened overlapping genes common to both diseases through WGCNA analysis. Subsequently, we performed GO and KEGG enrichment analysis on overlapping genes to elucidate the common mechanism of AMI and IHF. Machine learning algorithms are also used to identify key biomarkers. Finally, we performed immune cell infiltration analysis on the dataset to further evaluate immune cell changes in AMI and IHF.ResultsWe obtained 74 overlapping genes of AMI and IHF through WGCNA analysis, and the enrichment analysis results mainly focused on immune and inflammation-related mechanisms. Through the three machine learning algorithms of LASSO, RF and SVM-RFE, we finally obtained the four Hub genes of IL1B, TIMP2, IFIT3, and P2RY2, and verified them in the IHF dataset GSE116250, and the diagnostic model AUC = 0.907. The results of immune infiltration analysis showed that 8 types of immune cells were significantly different in AMI samples, and 6 types of immune cells were significantly different in IHF samples.ConclusionWe explored the mechanism of IHF after AMI by WGCNA, enrichment analysis, and immune infiltration analysis. Four potential diagnostic candidate genes and therapeutic targets were identified by machine learning algorithms. This provides a new idea for the pathogenesis, diagnosis, and treatment of IHF after AMI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碱性染料完成签到,获得积分10
1秒前
沙子完成签到,获得积分10
1秒前
烤鱼片完成签到 ,获得积分10
2秒前
wisdom完成签到,获得积分10
2秒前
劳伦斯晨发布了新的文献求助10
2秒前
xx完成签到,获得积分10
3秒前
不安的采白完成签到,获得积分10
3秒前
3秒前
哈哈哈完成签到 ,获得积分10
3秒前
刘珍荣完成签到,获得积分10
3秒前
4秒前
myS完成签到 ,获得积分10
5秒前
善良书蕾完成签到,获得积分10
5秒前
夏晴晴完成签到,获得积分10
5秒前
6秒前
安详的断缘完成签到,获得积分10
7秒前
小柯完成签到,获得积分10
7秒前
善学以致用应助灯座采纳,获得10
7秒前
季冬十五完成签到,获得积分10
7秒前
李健的小迷弟应助灯座采纳,获得10
7秒前
斯文懿轩完成签到 ,获得积分20
7秒前
本恩宁完成签到 ,获得积分10
8秒前
夏天完成签到,获得积分10
9秒前
柔弱水香完成签到 ,获得积分10
9秒前
菠萝吃多完成签到,获得积分10
9秒前
刘齐完成签到,获得积分10
10秒前
Celestial_JY完成签到,获得积分10
12秒前
cloud完成签到,获得积分10
12秒前
幼儿园老大完成签到,获得积分10
13秒前
深情安青应助优美采纳,获得30
14秒前
梁晓雪完成签到 ,获得积分10
14秒前
kitsch完成签到 ,获得积分10
15秒前
Ava应助年轻绮波采纳,获得10
15秒前
黄油可颂完成签到 ,获得积分10
15秒前
小刘爱科研完成签到,获得积分10
15秒前
interest-li完成签到,获得积分10
16秒前
苦咖啡行僧完成签到 ,获得积分10
16秒前
橙子完成签到,获得积分10
16秒前
Ouou完成签到 ,获得积分10
16秒前
糊涂涂完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256647
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753264
捐赠科研通 4292005
什么是DOI,文献DOI怎么找? 2355253
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312455