Combining WGCNA and machine learning to identify mechanisms and biomarkers of ischemic heart failure development after acute myocardial infarction

免疫系统 心肌梗塞 小桶 机制(生物学) 心力衰竭 计算生物学 人工智能 机器学习 生物 计算机科学 基因 内科学 医学 免疫学 基因表达 遗传学 基因本体论 哲学 认识论
作者
Yan Li,Hanjie Ying,Feng Jiang,Haoyu Chen,Yi-Tao Xue,YiDing Yu
出处
期刊:Heliyon [Elsevier BV]
卷期号:: e27165-e27165
标识
DOI:10.1016/j.heliyon.2024.e27165
摘要

Abstract

Background

Ischemic heart failure (IHF) is a serious complication after acute myocardial infarction (AMI). Understanding the mechanism of IHF after AMI will help us conduct early diagnosis and treatment.

Methods

We obtained the AMI dataset GSE66360 and the IHF dataset GSE57338 from the GEO database, and screened overlapping genes common to both diseases through WGCNA analysis. Subsequently, we performed GO and KEGG enrichment analysis on overlapping genes to elucidate the common mechanism of AMI and IHF. Machine learning algorithms are also used to identify key biomarkers. Finally, we performed immune cell infiltration analysis on the dataset to further evaluate immune cell changes in AMI and IHF.

Results

We obtained 74 overlapping genes of AMI and IHF through WGCNA analysis, and the enrichment analysis results mainly focused on immune and inflammation-related mechanisms. Through the three machine learning algorithms of LASSO, RF and SVM-RFE, we finally obtained the four Hub genes of IL1B, TIMP2, IFIT3, and P2RY2, and verified them in the IHF dataset GSE116250, and the diagnostic model AUC = 0.907. The results of immune infiltration analysis showed that 8 types of immune cells were significantly different in AMI samples, and 6 types of immune cells were significantly different in IHF samples.

Conclusion

We explored the mechanism of IHF after AMI by WGCNA, enrichment analysis, and immune infiltration analysis. Four potential diagnostic candidate genes and therapeutic targets were identified by machine learning algorithms. This provides a new idea for the pathogenesis, diagnosis, and treatment of IHF after AMI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卢静静发布了新的文献求助10
1秒前
1秒前
3秒前
哈哈哈发布了新的文献求助10
3秒前
4秒前
Jasper应助wiwi采纳,获得30
4秒前
丘比特应助lxgz采纳,获得10
6秒前
HansStone完成签到,获得积分10
8秒前
塵埃发布了新的文献求助10
9秒前
健忘远山发布了新的文献求助10
9秒前
邱邱完成签到,获得积分20
9秒前
11秒前
拓跋箴完成签到,获得积分10
11秒前
在水一方应助鹿雅彤采纳,获得10
11秒前
JamesPei应助火星上鑫鹏采纳,获得10
12秒前
风清扬发布了新的文献求助10
12秒前
Vincey完成签到,获得积分10
14秒前
共享精神应助邱邱采纳,获得10
15秒前
Ade完成签到,获得积分10
15秒前
16秒前
拼搏的高高完成签到,获得积分10
16秒前
星辰大海应助坦率抽屉采纳,获得10
16秒前
小蘑菇应助MyMuses采纳,获得10
17秒前
传奇3应助仁爱的晓刚采纳,获得10
19秒前
21秒前
鹿雅彤完成签到,获得积分10
21秒前
解语花发布了新的文献求助30
22秒前
Ava应助岁岁平安采纳,获得10
23秒前
科研通AI2S应助大家好采纳,获得200
23秒前
24秒前
鹿雅彤发布了新的文献求助10
26秒前
28秒前
29秒前
赘婿应助典雅的俊驰采纳,获得10
29秒前
30秒前
30秒前
31秒前
丘比特应助clyhg采纳,获得10
31秒前
wiwi发布了新的文献求助30
32秒前
希达发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578