Combining WGCNA and machine learning to identify mechanisms and biomarkers of ischemic heart failure development after acute myocardial infarction

免疫系统 心肌梗塞 小桶 机制(生物学) 心力衰竭 计算生物学 人工智能 机器学习 生物 计算机科学 基因 内科学 医学 免疫学 基因表达 遗传学 基因本体论 哲学 认识论
作者
Yan Li,Hanjie Ying,Feng Jiang,Haoyu Chen,Yi-Tao Xue,YiDing Yu
出处
期刊:Heliyon [Elsevier]
卷期号:: e27165-e27165
标识
DOI:10.1016/j.heliyon.2024.e27165
摘要

Abstract

Background

Ischemic heart failure (IHF) is a serious complication after acute myocardial infarction (AMI). Understanding the mechanism of IHF after AMI will help us conduct early diagnosis and treatment.

Methods

We obtained the AMI dataset GSE66360 and the IHF dataset GSE57338 from the GEO database, and screened overlapping genes common to both diseases through WGCNA analysis. Subsequently, we performed GO and KEGG enrichment analysis on overlapping genes to elucidate the common mechanism of AMI and IHF. Machine learning algorithms are also used to identify key biomarkers. Finally, we performed immune cell infiltration analysis on the dataset to further evaluate immune cell changes in AMI and IHF.

Results

We obtained 74 overlapping genes of AMI and IHF through WGCNA analysis, and the enrichment analysis results mainly focused on immune and inflammation-related mechanisms. Through the three machine learning algorithms of LASSO, RF and SVM-RFE, we finally obtained the four Hub genes of IL1B, TIMP2, IFIT3, and P2RY2, and verified them in the IHF dataset GSE116250, and the diagnostic model AUC = 0.907. The results of immune infiltration analysis showed that 8 types of immune cells were significantly different in AMI samples, and 6 types of immune cells were significantly different in IHF samples.

Conclusion

We explored the mechanism of IHF after AMI by WGCNA, enrichment analysis, and immune infiltration analysis. Four potential diagnostic candidate genes and therapeutic targets were identified by machine learning algorithms. This provides a new idea for the pathogenesis, diagnosis, and treatment of IHF after AMI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd36完成签到,获得积分10
刚刚
2秒前
4秒前
茹茹发布了新的文献求助10
4秒前
5秒前
QQ发布了新的文献求助10
5秒前
张世纪发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
cocolu举报牟白容求助涉嫌违规
8秒前
Akim应助专一的无颜采纳,获得10
9秒前
9秒前
9秒前
阿邪发布了新的文献求助10
10秒前
11秒前
禾沐完成签到 ,获得积分10
11秒前
文文完成签到,获得积分10
12秒前
花花完成签到,获得积分10
12秒前
12秒前
张世纪完成签到,获得积分10
12秒前
李健应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得80
13秒前
cctv18应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
cctv18应助科研通管家采纳,获得10
13秒前
凶狠的清完成签到,获得积分20
13秒前
东方欲晓应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
科目三应助语言的浅浅采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
14秒前
snow_dragon完成签到 ,获得积分10
14秒前
cctv18应助科研通管家采纳,获得10
14秒前
平常的毛豆完成签到,获得积分10
14秒前
小杨发布了新的文献求助30
16秒前
wanci应助东东采纳,获得10
16秒前
烟花应助材料化学左亚坤采纳,获得10
16秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330005
求助须知:如何正确求助?哪些是违规求助? 2959617
关于积分的说明 8596037
捐赠科研通 2637980
什么是DOI,文献DOI怎么找? 1444063
科研通“疑难数据库(出版商)”最低求助积分说明 668931
邀请新用户注册赠送积分活动 656507