亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining WGCNA and machine learning to identify mechanisms and biomarkers of ischemic heart failure development after acute myocardial infarction

心肌梗塞 心脏病学 心力衰竭 重症监护医学 内科学 医学
作者
Yan Li,Ying Hu,Feng Jiang,Haoyu Chen,Yitao Xue,Yiding Yu
出处
期刊:Heliyon [Elsevier]
卷期号:10 (5): e27165-e27165 被引量:7
标识
DOI:10.1016/j.heliyon.2024.e27165
摘要

BackgroundIschemic heart failure (IHF) is a serious complication after acute myocardial infarction (AMI). Understanding the mechanism of IHF after AMI will help us conduct early diagnosis and treatment.MethodsWe obtained the AMI dataset GSE66360 and the IHF dataset GSE57338 from the GEO database, and screened overlapping genes common to both diseases through WGCNA analysis. Subsequently, we performed GO and KEGG enrichment analysis on overlapping genes to elucidate the common mechanism of AMI and IHF. Machine learning algorithms are also used to identify key biomarkers. Finally, we performed immune cell infiltration analysis on the dataset to further evaluate immune cell changes in AMI and IHF.ResultsWe obtained 74 overlapping genes of AMI and IHF through WGCNA analysis, and the enrichment analysis results mainly focused on immune and inflammation-related mechanisms. Through the three machine learning algorithms of LASSO, RF and SVM-RFE, we finally obtained the four Hub genes of IL1B, TIMP2, IFIT3, and P2RY2, and verified them in the IHF dataset GSE116250, and the diagnostic model AUC = 0.907. The results of immune infiltration analysis showed that 8 types of immune cells were significantly different in AMI samples, and 6 types of immune cells were significantly different in IHF samples.ConclusionWe explored the mechanism of IHF after AMI by WGCNA, enrichment analysis, and immune infiltration analysis. Four potential diagnostic candidate genes and therapeutic targets were identified by machine learning algorithms. This provides a new idea for the pathogenesis, diagnosis, and treatment of IHF after AMI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
cqbrain123完成签到,获得积分10
8秒前
科研通AI2S应助cccccc采纳,获得10
8秒前
甄雨琦发布了新的文献求助10
9秒前
oleskarabach发布了新的文献求助10
16秒前
潇洒的月光关注了科研通微信公众号
17秒前
ccc完成签到 ,获得积分10
21秒前
阿瓜师傅完成签到,获得积分10
25秒前
甄雨琦完成签到,获得积分20
28秒前
Joyo应助阿瓜师傅采纳,获得10
36秒前
37秒前
气945发布了新的文献求助10
39秒前
41秒前
赘婿应助伯赏傲柏采纳,获得10
44秒前
44秒前
48秒前
51秒前
身法马可波罗完成签到 ,获得积分10
54秒前
容容容发布了新的文献求助10
55秒前
1分钟前
zznzn完成签到,获得积分10
1分钟前
容容容完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
知了又完成签到,获得积分20
1分钟前
Msc关注了科研通微信公众号
1分钟前
1分钟前
知了又发布了新的文献求助20
1分钟前
yu完成签到 ,获得积分10
1分钟前
wykion完成签到,获得积分0
1分钟前
坚定汝燕发布了新的文献求助10
1分钟前
昏睡的冰双完成签到,获得积分10
1分钟前
Lusteri完成签到 ,获得积分10
1分钟前
oleskarabach完成签到,获得积分20
1分钟前
1分钟前
陶醉元冬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376343
求助须知:如何正确求助?哪些是违规求助? 4501460
关于积分的说明 14013061
捐赠科研通 4409230
什么是DOI,文献DOI怎么找? 2422111
邀请新用户注册赠送积分活动 1414926
关于科研通互助平台的介绍 1391787