光学
光放大器
材料科学
掺铒光纤放大器
纤维
光纤布拉格光栅
光纤
物理
激光器
复合材料
作者
Yihong Fang,Xinyi Zhang,Xiheng Huang,Yan Zeng,Ou Xu,Jianping Li,Songnian Fu,Yuwen Qin
标识
DOI:10.3788/col202422.021403
摘要
The dynamic gain of a few-mode erbium-doped fiber amplifier (FM-EDFA) is vital for the long-haul mode division multiplexing (MDM) transmission. Here, we investigate the mode-dependent dynamic gain of an FM-EDFA under various manipulations of the pump mode. First, we numerically calculate the gain variation with respect to the input signal power, where a mode-dependent saturation input power occurs under different pump modes. Even under the fixed intensity profile of the pump laser, the saturation input power of each spatial mode is different. Moreover, high-order mode pumping leads to a compression of the linear amplification region, even though it is beneficial for the mitigation of the differential modal gain (DMG) arising in all guided modes. Then, we develop an all-fiber 3-mode EDFA, where the fundamental mode of the pump laser can be efficiently converted to the LP11 mode using the all-fiber mode-selective coupler (MSC). In comparison with the traditional LP01 pumping scheme, the DMG at 1550 nm can be mitigated from 1.61 dB to 0.97 dB under the LP11 mode pumping, while both an average gain of 19.93 dB and a DMG of less than 1 dB can be achieved from 1530 nm to 1560 nm. However, the corresponding signal input saturation powers are reduced by 0.3 dB for the LP01 mode and 1.6 dB for the LP11 mode, respectively. Both theoretical and experimental results indicate that a trade-off occurs between the DMG mitigation and the extension of the linear amplification range when the intensity profile of pump laser is manipulated.
科研通智能强力驱动
Strongly Powered by AbleSci AI