Revealing the Denoising Principle of Zero-Shot N2N-Based Algorithm from 1D Spectrum to 2D Image

降噪 算法 过度拟合 正规化(语言学) 人工智能 噪音(视频) 计算机科学 散粒噪声 全变差去噪 图像(数学) 模式识别(心理学) 人工神经网络 电信 探测器
作者
Siheng Luo,Si‐Qi Pan,Ganyu Chen,Yi Xie,Bin Ren,Guokun Liu,Zhong‐Qun Tian
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (10): 4086-4092 被引量:3
标识
DOI:10.1021/acs.analchem.3c04608
摘要

Denoising is a necessary step in image analysis to extract weak signals, especially those hardly identified by the naked eye. Unlike the data-driven deep-learning denoising algorithms relying on a clean image as the reference, Noise2Noise (N2N) was able to denoise the noise image, providing sufficiently noise images with the same subject but randomly distributed noise. Further, by introducing data augmentation to create a big data set and regularization to prevent model overfitting, zero-shot N2N-based denoising was proposed in which only a single noisy image was needed. Although various N2N-based denoising algorithms have been developed with high performance, their complicated black box operation prevented the lightweight. Therefore, to reveal the working function of the zero-shot N2N-based algorithm, we proposed a lightweight Peak2Peak algorithm (P2P) and qualitatively and quantitatively analyzed its denoising behavior on the 1D spectrum and 2D image. We found that the high-performance denoising originates from the trade-off balance between the loss function and regularization in the denoising module, where regularization is the switch of denoising. Meanwhile, the signal extraction is mainly from the self-supervised characteristic learning in the data augmentation module. Further, the lightweight P2P improved the denoising speed by at least ten times but with little performance loss, compared with that of the current N2N-based algorithms. In general, the visualization of P2P provides a reference for revealing the working function of zero-shot N2N-based algorithms, which would pave the way for the application of these algorithms toward real-time (in situ, in vivo, and operando) research improving both temporal and spatial resolutions. The P2P is open-source at https://github.com/3331822w/Peak2Peakand will be accessible online access at https://ramancloud.xmu.edu.cn/tutorial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助llll采纳,获得10
2秒前
2秒前
wenwj9完成签到,获得积分10
2秒前
2秒前
nicheng发布了新的文献求助50
2秒前
道友请留步完成签到 ,获得积分10
3秒前
科研通AI5应助lijia3采纳,获得10
3秒前
芷烟发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Lucas应助xiaozhuzhu采纳,获得10
4秒前
achuan发布了新的文献求助20
6秒前
琳琳发布了新的文献求助10
7秒前
郑雪红发布了新的文献求助30
7秒前
Lam发布了新的文献求助60
8秒前
pp1230发布了新的文献求助50
8秒前
9秒前
星辰完成签到,获得积分10
9秒前
9秒前
suqian发布了新的文献求助30
9秒前
10秒前
丘比特应助xr采纳,获得10
10秒前
外Y发布了新的文献求助20
10秒前
zho发布了新的文献求助30
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
Jasen发布了新的文献求助10
11秒前
勤奋静曼发布了新的文献求助30
12秒前
务实天德完成签到,获得积分10
14秒前
一一发布了新的文献求助10
15秒前
UU发布了新的文献求助10
16秒前
17秒前
suqian完成签到,获得积分20
17秒前
achuan发布了新的文献求助10
17秒前
reflux应助鹅鹅采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542598
求助须知:如何正确求助?哪些是违规求助? 3119973
关于积分的说明 9341143
捐赠科研通 2818043
什么是DOI,文献DOI怎么找? 1549287
邀请新用户注册赠送积分活动 722093
科研通“疑难数据库(出版商)”最低求助积分说明 712928