Multi-Scale Rolling Bearing Fault Diagnosis Method Based on Transfer Learning

稳健性(进化) 计算机科学 适应性 人工智能 方位(导航) 断层(地质) 学习迁移 机器学习 卷积(计算机科学) 模式识别(心理学) 数据挖掘 人工神经网络 生物化学 生物 基因 地质学 地震学 化学 生态学
作者
Zhenyu Yin,Feiqing Zhang,Guangyuan Xu,Guangjie Han,Yuanguo Bi
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (3): 1198-1198 被引量:4
标识
DOI:10.3390/app14031198
摘要

Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, is constructed. This network, by integrating the features of vibration signals at multiple scales, is dedicated to capturing key information within bearing vibration signals. Innovatively, this study replaces traditional convolution with dynamic convolution in MBDCNet, aiming to enhance the model’s flexibility and adaptability. Furthermore, the study implements pre-training and transfer learning strategies to maximally extract latent knowledge from source domain data. By optimizing the loss function and fine-tuning the learning rate, the robustness and generalization ability of the model in the target domain are significantly improved. The proposed method is validated on bearing datasets provided by Case Western Reserve University and Jiangnan University. The experimental results demonstrate high accuracy in most diagnostic tasks, achieving optimal average accuracy on both datasets, thus verifying the stability and robustness of our approach in various diagnostic tasks. This offers a reliable research direction in terms of enhancing the reliability of industrial equipment, especially in the field of bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助阿巴阿巴采纳,获得10
刚刚
healer发布了新的文献求助10
刚刚
小芳芳发布了新的文献求助10
1秒前
Vicky完成签到 ,获得积分10
2秒前
小小章鱼发布了新的文献求助10
3秒前
田様应助Hayward采纳,获得10
3秒前
runtang发布了新的文献求助10
5秒前
宜醉宜游宜睡完成签到,获得积分0
9秒前
10秒前
善学以致用应助熙熙采纳,获得10
11秒前
Charon完成签到,获得积分10
11秒前
852应助要减肥丹妗采纳,获得10
11秒前
阿狸与桃子完成签到,获得积分10
11秒前
小小章鱼完成签到,获得积分10
12秒前
12秒前
小明应助独角兽采纳,获得30
13秒前
13秒前
CodeCraft应助save采纳,获得10
13秒前
无花果应助戈美婷采纳,获得10
14秒前
小白小王发布了新的文献求助10
15秒前
duwang发布了新的文献求助20
15秒前
ywzwszl完成签到,获得积分0
15秒前
dongdong完成签到,获得积分10
15秒前
炙热的无心完成签到 ,获得积分10
16秒前
17秒前
独特元蝶发布了新的文献求助10
17秒前
18秒前
18秒前
SciGPT应助阿狸与桃子采纳,获得10
20秒前
foxp3发布了新的文献求助10
20秒前
21秒前
懒癌晚期完成签到,获得积分10
21秒前
田野发布了新的文献求助10
21秒前
星辰大海应助小白小王采纳,获得10
22秒前
Jewel_719完成签到,获得积分10
22秒前
23秒前
runtang发布了新的文献求助10
23秒前
淡墨发布了新的文献求助10
25秒前
25秒前
Hayward发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577961
求助须知:如何正确求助?哪些是违规求助? 3997059
关于积分的说明 12374252
捐赠科研通 3671085
什么是DOI,文献DOI怎么找? 2023246
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176