Multi-spectral fusion and self-attention mechanisms for Gentiana origin identification via near-infrared spectroscopy

龙胆属 融合 鉴定(生物学) 红外光谱学 光谱学 红外线的 化学 物理 生物 光学 植物 有机化学 语言学 哲学 量子力学
作者
Sihai Li,Yangyang Wang,Hang Song,Mingqi Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:246: 105068-105068 被引量:1
标识
DOI:10.1016/j.chemolab.2024.105068
摘要

Gentiana is rich in Gentiopicroside and strychnine acid with medicinal value. However, the active ingredients of Gentiana from different origins are different, so identifying Gentian's origin is significant. Currently, neural networks such as CNN and GRU are widely used for spectral data analysis, but the modeling effect is easily affected by the spectral preprocessing method, and the long region and many features of spectral data make it difficult for CNN models to capture the long-term dependence of spectra, while GRU modeling has a large number of parameters, high computational complexity, and low efficiency. Therefore, a Gentian Root Data Fusion Module (GL) for sequence data is proposed to achieve the fusion between spectral data under different pre-processing by assigning weights to multiple pre-processing data and all features of pre-processing data respectively, making full use of the advantages of different pre-processing methods. Aiming at the characteristics of the long spectral data region, the joint architecture of convolutional neural network (CNN) and gated neural network (GRU) is adopted to achieve the extraction of features and the capture of long-term dependencies, while reducing the model complexity. Finally, GL is integrated with CNN and GRU to craft the advanced collaborative framework known as CCRN. The experimental findings demonstrate that CCRN outperforms CNN + GRU, CNN, PLS-DA, and SVM in terms of accuracy and loss function performance. Notably, CCRN exhibits superior Accuracy, Recall, and F1-score, surpassing the CNN + GRU model by 2.4 %, 2.1 %, and 2.1 %, respectively. These results validate the efficacy of the GL module in seamlessly integrating various preprocessing methods. In addition, the model CCRN still performs best when tested on public datasets, proving that CCRN has good Portability and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
三又一十八完成签到,获得积分10
1秒前
Dandelion发布了新的文献求助10
1秒前
Jasper应助178181采纳,获得10
2秒前
WIND-CUTTER完成签到,获得积分10
2秒前
4秒前
4秒前
kean1943发布了新的文献求助10
4秒前
陈永伟发布了新的文献求助10
4秒前
4秒前
阳佟半仙完成签到,获得积分10
4秒前
5秒前
xhf发布了新的文献求助10
5秒前
搞怪网络完成签到,获得积分10
5秒前
5秒前
7秒前
8秒前
科研通AI2S应助wjj采纳,获得10
8秒前
大大发布了新的文献求助10
9秒前
啦啦啦发布了新的文献求助10
9秒前
初见完成签到,获得积分10
9秒前
Tsui完成签到,获得积分10
9秒前
pp发布了新的文献求助20
9秒前
9秒前
勤劳白昼发布了新的文献求助10
10秒前
Owen应助安渝采纳,获得10
10秒前
fkhuny完成签到,获得积分10
11秒前
11秒前
上官若男应助syuny采纳,获得10
11秒前
lxbu完成签到,获得积分10
12秒前
bairimao发布了新的文献求助10
12秒前
wyk发布了新的文献求助10
12秒前
领导范儿应助小东西采纳,获得10
12秒前
13秒前
伶俐问薇完成签到,获得积分10
13秒前
善学以致用应助112255采纳,获得10
13秒前
Bloom发布了新的文献求助10
13秒前
sino-ft完成签到,获得积分10
14秒前
文艺从彤完成签到,获得积分10
14秒前
打打应助fkhuny采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406