已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-spectral fusion and self-attention mechanisms for Gentiana origin identification via near-infrared spectroscopy

龙胆属 融合 鉴定(生物学) 红外光谱学 光谱学 红外线的 化学 物理 生物 光学 植物 有机化学 语言学 哲学 量子力学
作者
Sihai Li,Yangyang Wang,Hang Song,Mingqi Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:246: 105068-105068 被引量:3
标识
DOI:10.1016/j.chemolab.2024.105068
摘要

Gentiana is rich in Gentiopicroside and strychnine acid with medicinal value. However, the active ingredients of Gentiana from different origins are different, so identifying Gentian's origin is significant. Currently, neural networks such as CNN and GRU are widely used for spectral data analysis, but the modeling effect is easily affected by the spectral preprocessing method, and the long region and many features of spectral data make it difficult for CNN models to capture the long-term dependence of spectra, while GRU modeling has a large number of parameters, high computational complexity, and low efficiency. Therefore, a Gentian Root Data Fusion Module (GL) for sequence data is proposed to achieve the fusion between spectral data under different pre-processing by assigning weights to multiple pre-processing data and all features of pre-processing data respectively, making full use of the advantages of different pre-processing methods. Aiming at the characteristics of the long spectral data region, the joint architecture of convolutional neural network (CNN) and gated neural network (GRU) is adopted to achieve the extraction of features and the capture of long-term dependencies, while reducing the model complexity. Finally, GL is integrated with CNN and GRU to craft the advanced collaborative framework known as CCRN. The experimental findings demonstrate that CCRN outperforms CNN + GRU, CNN, PLS-DA, and SVM in terms of accuracy and loss function performance. Notably, CCRN exhibits superior Accuracy, Recall, and F1-score, surpassing the CNN + GRU model by 2.4 %, 2.1 %, and 2.1 %, respectively. These results validate the efficacy of the GL module in seamlessly integrating various preprocessing methods. In addition, the model CCRN still performs best when tested on public datasets, proving that CCRN has good Portability and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Jessie采纳,获得10
1秒前
NexusExplorer应助sun采纳,获得10
2秒前
李爱国应助小樊同学采纳,获得10
2秒前
bkagyin应助川baba采纳,获得10
3秒前
冷树发布了新的文献求助10
4秒前
bx完成签到,获得积分10
5秒前
6秒前
小蘑菇应助Ting330采纳,获得10
6秒前
7秒前
13给13的求助进行了留言
7秒前
小樊同学完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
NexusExplorer应助微笑的采珊采纳,获得50
9秒前
lzh完成签到 ,获得积分10
11秒前
田様应助淡淡的南风采纳,获得30
11秒前
搜集达人应助淡淡的南风采纳,获得10
11秒前
科研通AI6应助淡淡的南风采纳,获得10
11秒前
ceeray23应助淡淡的南风采纳,获得10
11秒前
12秒前
Zhangyitian发布了新的文献求助10
12秒前
12秒前
13秒前
网易乐完成签到,获得积分20
14秒前
15秒前
16秒前
sun发布了新的文献求助10
18秒前
wxyshare应助可爱寻芹采纳,获得10
18秒前
kk99123应助淡淡的南风采纳,获得10
18秒前
搜集达人应助淡淡的南风采纳,获得30
18秒前
ho应助淡淡的南风采纳,获得30
18秒前
情怀应助淡淡的南风采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
kentonchow应助淡淡的南风采纳,获得50
18秒前
ccm应助科研通管家采纳,获得10
18秒前
JamesPei应助淡淡的南风采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733