已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-spectral fusion and self-attention mechanisms for Gentiana origin identification via near-infrared spectroscopy

龙胆属 融合 鉴定(生物学) 红外光谱学 光谱学 红外线的 化学 物理 生物 光学 植物 有机化学 语言学 哲学 量子力学
作者
Sihai Li,Yangyang Wang,Hang Song,Mingqi Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:246: 105068-105068
标识
DOI:10.1016/j.chemolab.2024.105068
摘要

Gentiana is rich in Gentiopicroside and strychnine acid with medicinal value. However, the active ingredients of Gentiana from different origins are different, so identifying Gentian's origin is significant. Currently, neural networks such as CNN and GRU are widely used for spectral data analysis, but the modeling effect is easily affected by the spectral preprocessing method, and the long region and many features of spectral data make it difficult for CNN models to capture the long-term dependence of spectra, while GRU modeling has a large number of parameters, high computational complexity, and low efficiency. Therefore, a Gentian Root Data Fusion Module (GL) for sequence data is proposed to achieve the fusion between spectral data under different pre-processing by assigning weights to multiple pre-processing data and all features of pre-processing data respectively, making full use of the advantages of different pre-processing methods. Aiming at the characteristics of the long spectral data region, the joint architecture of convolutional neural network (CNN) and gated neural network (GRU) is adopted to achieve the extraction of features and the capture of long-term dependencies, while reducing the model complexity. Finally, GL is integrated with CNN and GRU to craft the advanced collaborative framework known as CCRN. The experimental findings demonstrate that CCRN outperforms CNN + GRU, CNN, PLS-DA, and SVM in terms of accuracy and loss function performance. Notably, CCRN exhibits superior Accuracy, Recall, and F1-score, surpassing the CNN + GRU model by 2.4 %, 2.1 %, and 2.1 %, respectively. These results validate the efficacy of the GL module in seamlessly integrating various preprocessing methods. In addition, the model CCRN still performs best when tested on public datasets, proving that CCRN has good Portability and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LPH01完成签到,获得积分10
刚刚
远方发布了新的文献求助10
3秒前
5秒前
以菱完成签到 ,获得积分10
5秒前
6秒前
执着千筹完成签到,获得积分10
8秒前
8秒前
小马甲应助Ahha采纳,获得10
8秒前
10秒前
Craig发布了新的文献求助10
10秒前
11秒前
11秒前
14秒前
14秒前
15秒前
17秒前
17秒前
岳莹晓完成签到 ,获得积分10
18秒前
18秒前
依唔吁发布了新的文献求助10
19秒前
无花果应助甜甜的寒安采纳,获得10
20秒前
Ahha发布了新的文献求助10
20秒前
辛勤电灯胆完成签到,获得积分10
21秒前
远方完成签到,获得积分10
22秒前
打打应助依唔吁采纳,获得10
24秒前
Geist完成签到 ,获得积分10
24秒前
立志读博的小胡完成签到,获得积分10
25秒前
Craig完成签到,获得积分10
26秒前
上官若男应助风止采纳,获得10
31秒前
33秒前
拟好完成签到,获得积分20
34秒前
甜甜的寒安完成签到,获得积分10
35秒前
Miao完成签到,获得积分10
40秒前
41秒前
忧伤的冰薇完成签到 ,获得积分10
42秒前
JZ1640完成签到,获得积分10
45秒前
科研通AI2S应助风中的丝袜采纳,获得10
49秒前
樱桃猴子应助风中的丝袜采纳,获得10
49秒前
科研通AI2S应助风中的丝袜采纳,获得10
49秒前
樱桃猴子应助风中的丝袜采纳,获得30
49秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793515
关于积分的说明 7806758
捐赠科研通 2449763
什么是DOI,文献DOI怎么找? 1303403
科研通“疑难数据库(出版商)”最低求助积分说明 626871
版权声明 601314