亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling and controlling of ship general section attitude adjustment process based on RBF neural network coupled with sliding mode algorithm

人工神经网络 章节(排版) 模式(计算机接口) 计算机科学 过程(计算) 算法 控制理论(社会学) 控制工程 人工智能 工程类 控制(管理) 操作系统
作者
Honggen Zhou,Chaoming Bao,Bo Deng,Lei Li
标识
DOI:10.1177/14750902241227301
摘要

Due to the advantages such as high efficiency, high precision, and the ability to reduce welding distortion, the block assembly method in shipbuilding possesses currently holds a dominant position in shipbuilding engineering. However, some key issues including low adjustment precision and slow control response speed urgently need to be resolved for the block assembly adjustment technology. This paper committed to solving the problems of inaccurate tracking of target displacement and slow control response speed in the vertical motion axis of the ship block joining equipment. A docking equipment control method based on the RBF neural network coupled with adaptive sliding mode algorithm was proposed. Firstly, an overview of the overall mechanics and control architecture of the ship block joining equipment was provided. Subsequently, a mathematical model for the transmission at the lifting mechanism was established. A sliding mode controller based on position control for the ship block joining equipment was designed for the transmission system. Then, the RBF neural network was employed to adjust the switching gain of the sliding mode controller and develop a self-adaptive sliding mode controller. Finally, simulations and verifications were conducted for multiple sets of input trajectories with different types. The results demonstrated that the combination of the neural network algorithm and the sliding mode control algorithm model presented in this paper reduces the system response time by 28.125% and improves the average motion tracking accuracy by 30.76%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhjct0313完成签到 ,获得积分10
3秒前
10秒前
Aaaaaa瘾发布了新的文献求助10
15秒前
丘比特应助Olivia采纳,获得10
20秒前
52秒前
55秒前
Olivia发布了新的文献求助10
1分钟前
Hasee发布了新的文献求助10
1分钟前
1分钟前
杰帅发布了新的文献求助10
1分钟前
cc发布了新的文献求助10
1分钟前
bkagyin应助杰帅采纳,获得10
1分钟前
至乐无乐发布了新的文献求助10
1分钟前
赘婿应助abull采纳,获得10
1分钟前
1分钟前
OCDer发布了新的文献求助30
1分钟前
2分钟前
2分钟前
2分钟前
abull发布了新的文献求助10
2分钟前
小王好饿完成签到 ,获得积分10
2分钟前
Olivia完成签到,获得积分10
3分钟前
我是老大应助JXC采纳,获得10
3分钟前
paperwork应助科研通管家采纳,获得10
3分钟前
国色不染尘完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
knoren发布了新的文献求助10
5分钟前
5分钟前
小巫发布了新的文献求助10
5分钟前
5分钟前
jarrykim完成签到,获得积分10
5分钟前
zzyh307完成签到 ,获得积分0
5分钟前
zxr完成签到 ,获得积分10
5分钟前
5分钟前
李嘉图发布了新的文献求助10
6分钟前
CodeCraft应助康康采纳,获得10
6分钟前
6分钟前
顾矜应助李嘉图采纳,获得10
6分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790439
关于积分的说明 7795297
捐赠科研通 2446910
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601146