已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling and controlling of ship general section attitude adjustment process based on RBF neural network coupled with sliding mode algorithm

人工神经网络 章节(排版) 模式(计算机接口) 计算机科学 过程(计算) 算法 控制理论(社会学) 控制工程 人工智能 工程类 控制(管理) 操作系统
作者
Honggen Zhou,Chaoming Bao,Bo Deng,Lei Li
标识
DOI:10.1177/14750902241227301
摘要

Due to the advantages such as high efficiency, high precision, and the ability to reduce welding distortion, the block assembly method in shipbuilding possesses currently holds a dominant position in shipbuilding engineering. However, some key issues including low adjustment precision and slow control response speed urgently need to be resolved for the block assembly adjustment technology. This paper committed to solving the problems of inaccurate tracking of target displacement and slow control response speed in the vertical motion axis of the ship block joining equipment. A docking equipment control method based on the RBF neural network coupled with adaptive sliding mode algorithm was proposed. Firstly, an overview of the overall mechanics and control architecture of the ship block joining equipment was provided. Subsequently, a mathematical model for the transmission at the lifting mechanism was established. A sliding mode controller based on position control for the ship block joining equipment was designed for the transmission system. Then, the RBF neural network was employed to adjust the switching gain of the sliding mode controller and develop a self-adaptive sliding mode controller. Finally, simulations and verifications were conducted for multiple sets of input trajectories with different types. The results demonstrated that the combination of the neural network algorithm and the sliding mode control algorithm model presented in this paper reduces the system response time by 28.125% and improves the average motion tracking accuracy by 30.76%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciKid524完成签到 ,获得积分10
7秒前
9秒前
孤芳自赏IrisKing完成签到 ,获得积分10
10秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得20
14秒前
MchemG应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
Xiaoxiao应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得30
14秒前
Jamie完成签到,获得积分10
20秒前
22秒前
dique3hao完成签到 ,获得积分10
22秒前
阔达的盼秋完成签到,获得积分10
23秒前
27秒前
小叉叉搞快点完成签到 ,获得积分10
29秒前
36秒前
佳敏完成签到 ,获得积分10
40秒前
Aurora发布了新的文献求助10
42秒前
Aurora完成签到,获得积分10
48秒前
54秒前
爱听歌的盼柳完成签到 ,获得积分10
56秒前
Hugo完成签到,获得积分10
1分钟前
柚子完成签到 ,获得积分10
1分钟前
冷傲的灯泡应助Jmike采纳,获得10
1分钟前
深情安青应助juno采纳,获得10
1分钟前
李爱国应助沁沁沁采纳,获得10
1分钟前
清爽冬莲完成签到 ,获得积分10
1分钟前
DDL完成签到,获得积分10
1分钟前
1分钟前
懒癌晚期完成签到,获得积分10
1分钟前
高大凌寒发布了新的文献求助200
1分钟前
1分钟前
天真之桃完成签到,获得积分10
1分钟前
1分钟前
juno发布了新的文献求助10
1分钟前
莫小烦完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助椒盐柠檬茶采纳,获得10
1分钟前
寒雨发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671167
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778325
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760473
科研通“疑难数据库(出版商)”最低求助积分说明 735962