Modeling and controlling of ship general section attitude adjustment process based on RBF neural network coupled with sliding mode algorithm

人工神经网络 章节(排版) 模式(计算机接口) 计算机科学 过程(计算) 算法 控制理论(社会学) 控制工程 人工智能 工程类 控制(管理) 操作系统
作者
Honggen Zhou,Chaoming Bao,Bo Deng,Lei Li
标识
DOI:10.1177/14750902241227301
摘要

Due to the advantages such as high efficiency, high precision, and the ability to reduce welding distortion, the block assembly method in shipbuilding possesses currently holds a dominant position in shipbuilding engineering. However, some key issues including low adjustment precision and slow control response speed urgently need to be resolved for the block assembly adjustment technology. This paper committed to solving the problems of inaccurate tracking of target displacement and slow control response speed in the vertical motion axis of the ship block joining equipment. A docking equipment control method based on the RBF neural network coupled with adaptive sliding mode algorithm was proposed. Firstly, an overview of the overall mechanics and control architecture of the ship block joining equipment was provided. Subsequently, a mathematical model for the transmission at the lifting mechanism was established. A sliding mode controller based on position control for the ship block joining equipment was designed for the transmission system. Then, the RBF neural network was employed to adjust the switching gain of the sliding mode controller and develop a self-adaptive sliding mode controller. Finally, simulations and verifications were conducted for multiple sets of input trajectories with different types. The results demonstrated that the combination of the neural network algorithm and the sliding mode control algorithm model presented in this paper reduces the system response time by 28.125% and improves the average motion tracking accuracy by 30.76%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿滕完成签到,获得积分10
1秒前
Akim应助Lesile采纳,获得10
2秒前
livian完成签到,获得积分10
2秒前
庄建煌发布了新的文献求助10
2秒前
3秒前
3秒前
茜茜完成签到,获得积分10
4秒前
柚子应助芒果柠檬采纳,获得20
4秒前
白糖发布了新的文献求助10
4秒前
王肖完成签到 ,获得积分10
4秒前
道听途说完成签到 ,获得积分10
4秒前
共享精神应助紫薰采纳,获得10
5秒前
云朵0810发布了新的文献求助10
5秒前
从容芸完成签到,获得积分10
5秒前
清茶韵心发布了新的文献求助10
5秒前
5秒前
5秒前
亭曈完成签到,获得积分10
6秒前
慕青应助哇奥采纳,获得10
6秒前
7秒前
旺仔冰激凌完成签到,获得积分10
7秒前
扶瑶可接发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
姜林伟发布了新的文献求助10
8秒前
kjz发布了新的文献求助10
8秒前
8秒前
8秒前
LHW完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
王逗逗发布了新的文献求助10
10秒前
冬瓜熊发布了新的文献求助10
10秒前
一航完成签到,获得积分20
10秒前
万能图书馆应助Layla101采纳,获得10
10秒前
11秒前
小灰发布了新的文献求助200
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351821
求助须知:如何正确求助?哪些是违规求助? 4484784
关于积分的说明 13960373
捐赠科研通 4384451
什么是DOI,文献DOI怎么找? 2408942
邀请新用户注册赠送积分活动 1401489
关于科研通互助平台的介绍 1375007