Modeling and controlling of ship general section attitude adjustment process based on RBF neural network coupled with sliding mode algorithm

人工神经网络 章节(排版) 模式(计算机接口) 计算机科学 过程(计算) 算法 控制理论(社会学) 控制工程 人工智能 工程类 控制(管理) 操作系统
作者
Honggen Zhou,Chaoming Bao,Bo Deng,Lei Li
标识
DOI:10.1177/14750902241227301
摘要

Due to the advantages such as high efficiency, high precision, and the ability to reduce welding distortion, the block assembly method in shipbuilding possesses currently holds a dominant position in shipbuilding engineering. However, some key issues including low adjustment precision and slow control response speed urgently need to be resolved for the block assembly adjustment technology. This paper committed to solving the problems of inaccurate tracking of target displacement and slow control response speed in the vertical motion axis of the ship block joining equipment. A docking equipment control method based on the RBF neural network coupled with adaptive sliding mode algorithm was proposed. Firstly, an overview of the overall mechanics and control architecture of the ship block joining equipment was provided. Subsequently, a mathematical model for the transmission at the lifting mechanism was established. A sliding mode controller based on position control for the ship block joining equipment was designed for the transmission system. Then, the RBF neural network was employed to adjust the switching gain of the sliding mode controller and develop a self-adaptive sliding mode controller. Finally, simulations and verifications were conducted for multiple sets of input trajectories with different types. The results demonstrated that the combination of the neural network algorithm and the sliding mode control algorithm model presented in this paper reduces the system response time by 28.125% and improves the average motion tracking accuracy by 30.76%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆紫应助鱼在哪儿采纳,获得10
刚刚
汉堡包应助鱼在哪儿采纳,获得30
刚刚
刚刚
无花果应助鱼在哪儿采纳,获得10
刚刚
大模型应助鱼在哪儿采纳,获得10
刚刚
ding应助鱼在哪儿采纳,获得10
1秒前
Hello应助鱼在哪儿采纳,获得10
1秒前
Ava应助鱼在哪儿采纳,获得10
1秒前
星辰大海应助鱼在哪儿采纳,获得10
1秒前
Oscillator发布了新的文献求助10
1秒前
2秒前
3秒前
英姑应助12334采纳,获得10
4秒前
喵喵发布了新的文献求助30
5秒前
qpp完成签到,获得积分10
5秒前
爱老虎的仓鼠完成签到,获得积分10
6秒前
科研文献搬运工应助dd采纳,获得30
6秒前
7秒前
Emmmm发布了新的文献求助10
7秒前
知性的焦发布了新的文献求助10
7秒前
yangwei发布了新的文献求助10
7秒前
皓月孤烟完成签到,获得积分10
7秒前
现实的难胜完成签到,获得积分20
9秒前
9℃发布了新的文献求助10
9秒前
星辰大海应助马户的崛起采纳,获得10
9秒前
leaves发布了新的文献求助10
9秒前
11秒前
11秒前
刘春亚发布了新的文献求助10
12秒前
不会取名字完成签到,获得积分10
12秒前
13秒前
7lanxiong发布了新的文献求助10
14秒前
热心的网民C完成签到,获得积分10
15秒前
眼里有星辰完成签到,获得积分10
15秒前
万能图书馆应助彩色宛筠采纳,获得10
15秒前
15秒前
星辰大海应助星星采纳,获得10
17秒前
米粒完成签到,获得积分10
18秒前
深情的mewmew完成签到,获得积分10
18秒前
18秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051673
求助须知:如何正确求助?哪些是违规求助? 2708949
关于积分的说明 7415188
捐赠科研通 2353340
什么是DOI,文献DOI怎么找? 1245507
科研通“疑难数据库(出版商)”最低求助积分说明 605743
版权声明 595855