Modeling and controlling of ship general section attitude adjustment process based on RBF neural network coupled with sliding mode algorithm

人工神经网络 章节(排版) 模式(计算机接口) 计算机科学 过程(计算) 算法 控制理论(社会学) 控制工程 人工智能 工程类 控制(管理) 操作系统
作者
Honggen Zhou,Chaoming Bao,Bo Deng,Lei Li
标识
DOI:10.1177/14750902241227301
摘要

Due to the advantages such as high efficiency, high precision, and the ability to reduce welding distortion, the block assembly method in shipbuilding possesses currently holds a dominant position in shipbuilding engineering. However, some key issues including low adjustment precision and slow control response speed urgently need to be resolved for the block assembly adjustment technology. This paper committed to solving the problems of inaccurate tracking of target displacement and slow control response speed in the vertical motion axis of the ship block joining equipment. A docking equipment control method based on the RBF neural network coupled with adaptive sliding mode algorithm was proposed. Firstly, an overview of the overall mechanics and control architecture of the ship block joining equipment was provided. Subsequently, a mathematical model for the transmission at the lifting mechanism was established. A sliding mode controller based on position control for the ship block joining equipment was designed for the transmission system. Then, the RBF neural network was employed to adjust the switching gain of the sliding mode controller and develop a self-adaptive sliding mode controller. Finally, simulations and verifications were conducted for multiple sets of input trajectories with different types. The results demonstrated that the combination of the neural network algorithm and the sliding mode control algorithm model presented in this paper reduces the system response time by 28.125% and improves the average motion tracking accuracy by 30.76%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮白山完成签到 ,获得积分10
1秒前
涛tao完成签到,获得积分10
1秒前
意见少亿点完成签到 ,获得积分10
1秒前
1秒前
浮游应助zzl-2000采纳,获得10
2秒前
小康学弟发布了新的文献求助10
2秒前
yw完成签到,获得积分10
2秒前
77完成签到 ,获得积分10
3秒前
Shell完成签到,获得积分10
3秒前
Star1983完成签到,获得积分10
3秒前
哈哈喽完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Xylah应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Dean应助科研通管家采纳,获得50
4秒前
汉堡包应助科研通管家采纳,获得30
4秒前
Dean应助科研通管家采纳,获得50
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
啊哈哈哈啊哈完成签到,获得积分10
5秒前
luobote完成签到 ,获得积分10
6秒前
乘风的法袍完成签到,获得积分10
6秒前
xionggege完成签到,获得积分10
6秒前
名不显时心不朽完成签到,获得积分10
7秒前
哈哈喽发布了新的文献求助10
7秒前
星星完成签到,获得积分10
7秒前
GSR发布了新的文献求助10
7秒前
耍酷的白梦完成签到,获得积分10
8秒前
222发布了新的文献求助10
8秒前
zhangsf88完成签到,获得积分10
9秒前
XYY完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助150
10秒前
尊敬靖琪完成签到,获得积分10
10秒前
Lvy完成签到,获得积分10
10秒前
今天也不想搬砖完成签到,获得积分10
11秒前
yjzzz完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927230
求助须知:如何正确求助?哪些是违规求助? 4196614
关于积分的说明 13033700
捐赠科研通 3969366
什么是DOI,文献DOI怎么找? 2175324
邀请新用户注册赠送积分活动 1192409
关于科研通互助平台的介绍 1103081