同步(交流)
指数稳定性
控制理论(社会学)
人工神经网络
非线性系统
指数函数
基质(化学分析)
计算机科学
记忆电阻器
马尔可夫过程
数学
应用数学
控制(管理)
人工智能
拓扑(电路)
统计
工程类
数学分析
物理
材料科学
组合数学
量子力学
电气工程
复合材料
作者
Xiaoman Liu,Lianglin Xiong,Haiyang Zhang,Xiaobing Zhou
标识
DOI:10.1109/ntci60157.2023.10403722
摘要
This paper studies the problem of Exponential Synchronization (PES) for Memristor-based Neural Networks (MNNs) with Time-varying Delayed (TD) and semi-Markov Jump Parameters (semi-MJPs), employing Intermittent Sampled-data control (ISDC). By exploiting the free-matrix exponential-type inequality in conjunction with other analytical methodologies, a novel criterion for the stochastic exponential stability (CSES) of the error system is established, rooted in the LKF approach. This newly obtained criterion is expressed in terms of linear matrix inequalities, thereby alleviating the computational load associated with nonlinear matrix inequalities. Finally, present a numerical example that demonstrates the effectiveness of the proposed result.
科研通智能强力驱动
Strongly Powered by AbleSci AI