Development and validation of deep-learning network for detecting congenital heart disease from multi-view multi-modal transthoracic echocardiograms

胸骨旁线 心室 接收机工作特性 经胸超声心动图 心脏病 心脏病学 医学 内科学 放射科
作者
Mingmei Cheng,Juntao Yang,Xiaofeng Liu,Yanzhong Wang,Qun Wu,Fangyun Wang,Pei Li,Binbin Wang,Xin Zhang,Wanqing Xie
出处
期刊:Research [AAAS00]
卷期号:7 被引量:2
标识
DOI:10.34133/research.0319
摘要

Early detection and treatment of congenital heart disease (CHD) can significantly improve the prognosis of children. However, inexperienced sonographers often face difficulties in recognizing CHD through transthoracic echocardiogram (TTE) images. In this study, 2-dimensional (2D) and Doppler TTEs of children collected from 2 clinical groups from Beijing Children's Hospital between 2018 and 2022 were analyzed, including views of apical 4 chamber, subxiphoid long-axis view of 2 atria, parasternal long-axis view of the left ventricle, parasternal short-axis view of aorta, and suprasternal long-axis view. A deep learning (DL) framework was developed to identify cardiac views, integrate information from various views and modalities, visualize the high-risk region, and predict the probability of the subject being normal or having an atrial septal defect (ASD) or a ventricular septaldefect (VSD). A total of 1,932 children (1,255 healthy controls, 292 ASDs, and 385 VSDs) were collected from 2 clinical groups. For view classification, the DL model reached a mean [SD] accuracy of 0.989 [0.001]. For CHD screening, the model using both 2D and Doppler TTEs with 5 views achieved a mean [SD] area under the receiver operating characteristic curve (AUC) of 0.996 [0.000] and an accuracy of 0.994 [0.002] for within-center evaluation while reaching a mean [SD] AUC of 0.990 [0.003] and an accuracy of 0.993 [0.001] for cross-center test set. For the classification of healthy, ASD, and VSD, the model reached the mean [SD] accuracy of 0.991 [0.002] and 0.986 [0.001] for within- and cross-center evaluation, respectively. The DL models aggregating TTEs with more modalities and scanning views attained superior performance to approximate that of experienced sonographers. The incorporation of multiple views and modalities of TTEs in the model enables accurate identification of children with CHD in a noninvasive manner, suggesting the potential to enhance CHD detection performance and simplify the screening process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cl完成签到 ,获得积分10
1秒前
小小狗完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
娇气的白卉完成签到,获得积分10
2秒前
Mira发布了新的文献求助200
4秒前
4秒前
5秒前
朴素若灵完成签到,获得积分20
6秒前
务实惜儿完成签到,获得积分10
7秒前
7秒前
Lucas应助单复天采纳,获得10
7秒前
paparazzi221应助鸡蛋饼波比采纳,获得50
8秒前
滴滴哒完成签到,获得积分10
9秒前
宋晓静完成签到,获得积分10
9秒前
黑妖发布了新的文献求助10
9秒前
niqiu发布了新的文献求助10
9秒前
9秒前
秋刀鱼不过期完成签到,获得积分10
11秒前
chelsea完成签到,获得积分10
12秒前
达达完成签到,获得积分10
13秒前
充电宝应助半截神经病采纳,获得10
14秒前
15秒前
16秒前
16秒前
暮霭沉沉应助zzer采纳,获得10
16秒前
17秒前
毛线球球完成签到,获得积分20
17秒前
17秒前
17秒前
junfan完成签到,获得积分10
17秒前
19秒前
尚奇发布了新的文献求助10
19秒前
小蜜蜂发布了新的文献求助10
20秒前
思源应助Hong采纳,获得10
20秒前
大意的易巧完成签到,获得积分20
21秒前
笨笨十三完成签到 ,获得积分10
21秒前
21秒前
syyy发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786078
关于积分的说明 7774957
捐赠科研通 2441899
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825