亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of a Deep-Learning Network for Detecting Congenital Heart Disease from Multi-View Multi-Modal Transthoracic Echocardiograms

胸骨旁线 心室 接收机工作特性 经胸超声心动图 心脏病 心脏病学 医学 内科学 放射科
作者
Mingmei Cheng,Jing Wang,Xiaofeng Liu,Yanzhong Wang,Qun Wu,Fangyun Wang,Pei Li,Binbin Wang,Xin Zhang,Wanqing Xie
出处
期刊:Research [AAAS00]
卷期号:7 被引量:7
标识
DOI:10.34133/research.0319
摘要

Early detection and treatment of congenital heart disease (CHD) can significantly improve the prognosis of children. However, inexperienced sonographers often face difficulties in recognizing CHD through transthoracic echocardiogram (TTE) images. In this study, 2-dimensional (2D) and Doppler TTEs of children collected from 2 clinical groups from Beijing Children's Hospital between 2018 and 2022 were analyzed, including views of apical 4 chamber, subxiphoid long-axis view of 2 atria, parasternal long-axis view of the left ventricle, parasternal short-axis view of aorta, and suprasternal long-axis view. A deep learning (DL) framework was developed to identify cardiac views, integrate information from various views and modalities, visualize the high-risk region, and predict the probability of the subject being normal or having an atrial septal defect (ASD) or a ventricular septaldefect (VSD). A total of 1,932 children (1,255 healthy controls, 292 ASDs, and 385 VSDs) were collected from 2 clinical groups. For view classification, the DL model reached a mean [SD] accuracy of 0.989 [0.001]. For CHD screening, the model using both 2D and Doppler TTEs with 5 views achieved a mean [SD] area under the receiver operating characteristic curve (AUC) of 0.996 [0.000] and an accuracy of 0.994 [0.002] for within-center evaluation while reaching a mean [SD] AUC of 0.990 [0.003] and an accuracy of 0.993 [0.001] for cross-center test set. For the classification of healthy, ASD, and VSD, the model reached the mean [SD] accuracy of 0.991 [0.002] and 0.986 [0.001] for within- and cross-center evaluation, respectively. The DL models aggregating TTEs with more modalities and scanning views attained superior performance to approximate that of experienced sonographers. The incorporation of multiple views and modalities of TTEs in the model enables accurate identification of children with CHD in a noninvasive manner, suggesting the potential to enhance CHD detection performance and simplify the screening process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
熊一只发布了新的文献求助10
8秒前
鲁成危完成签到,获得积分10
8秒前
null应助相金鹏采纳,获得10
9秒前
SSY发布了新的文献求助10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
赘婿应助嘟嘟嘟嘟采纳,获得10
15秒前
李健应助熊一只采纳,获得10
16秒前
领导范儿应助Judy1111采纳,获得10
18秒前
洁净的千凡完成签到 ,获得积分10
19秒前
34秒前
season发布了新的文献求助10
39秒前
清爽的如波应助呜呼啦呼采纳,获得10
40秒前
呜呼啦呼完成签到,获得积分10
49秒前
烟雨客完成签到 ,获得积分10
55秒前
58秒前
1分钟前
mjsdx完成签到 ,获得积分10
1分钟前
Judy1111发布了新的文献求助10
1分钟前
Kristen发布了新的文献求助10
1分钟前
认真搞科研啦完成签到,获得积分10
1分钟前
1分钟前
Jasper应助hanatae采纳,获得10
1分钟前
cc完成签到,获得积分10
1分钟前
whisper完成签到,获得积分10
1分钟前
2分钟前
aikeyan完成签到 ,获得积分10
2分钟前
世界是圆圆的完成签到,获得积分10
2分钟前
hanatae发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
毛毛发布了新的文献求助10
2分钟前
姆姆没买完成签到 ,获得积分0
2分钟前
现代尔芙完成签到 ,获得积分10
2分钟前
了了完成签到,获得积分10
2分钟前
2分钟前
苗条的小蚂蚁完成签到,获得积分10
3分钟前
毛毛完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788249
求助须知:如何正确求助?哪些是违规求助? 5705679
关于积分的说明 15473340
捐赠科研通 4916347
什么是DOI,文献DOI怎么找? 2646310
邀请新用户注册赠送积分活动 1593966
关于科研通互助平台的介绍 1548346