Development and validation of deep-learning network for detecting congenital heart disease from multi-view multi-modal transthoracic echocardiograms

胸骨旁线 心室 接收机工作特性 经胸超声心动图 心脏病 心脏病学 医学 内科学 放射科
作者
Mingmei Cheng,Juntao Yang,Xiaofeng Liu,Yanzhong Wang,Qun Wu,Fangyun Wang,Pei Li,Binbin Wang,Xin Zhang,Wanqing Xie
出处
期刊:Research [AAAS00]
卷期号:7 被引量:2
标识
DOI:10.34133/research.0319
摘要

Early detection and treatment of congenital heart disease (CHD) can significantly improve the prognosis of children. However, inexperienced sonographers often face difficulties in recognizing CHD through transthoracic echocardiogram (TTE) images. In this study, 2-dimensional (2D) and Doppler TTEs of children collected from 2 clinical groups from Beijing Children's Hospital between 2018 and 2022 were analyzed, including views of apical 4 chamber, subxiphoid long-axis view of 2 atria, parasternal long-axis view of the left ventricle, parasternal short-axis view of aorta, and suprasternal long-axis view. A deep learning (DL) framework was developed to identify cardiac views, integrate information from various views and modalities, visualize the high-risk region, and predict the probability of the subject being normal or having an atrial septal defect (ASD) or a ventricular septaldefect (VSD). A total of 1,932 children (1,255 healthy controls, 292 ASDs, and 385 VSDs) were collected from 2 clinical groups. For view classification, the DL model reached a mean [SD] accuracy of 0.989 [0.001]. For CHD screening, the model using both 2D and Doppler TTEs with 5 views achieved a mean [SD] area under the receiver operating characteristic curve (AUC) of 0.996 [0.000] and an accuracy of 0.994 [0.002] for within-center evaluation while reaching a mean [SD] AUC of 0.990 [0.003] and an accuracy of 0.993 [0.001] for cross-center test set. For the classification of healthy, ASD, and VSD, the model reached the mean [SD] accuracy of 0.991 [0.002] and 0.986 [0.001] for within- and cross-center evaluation, respectively. The DL models aggregating TTEs with more modalities and scanning views attained superior performance to approximate that of experienced sonographers. The incorporation of multiple views and modalities of TTEs in the model enables accurate identification of children with CHD in a noninvasive manner, suggesting the potential to enhance CHD detection performance and simplify the screening process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
sw98318完成签到,获得积分10
1秒前
impala完成签到,获得积分10
1秒前
1秒前
欣喜访旋发布了新的文献求助10
1秒前
朱江涛完成签到 ,获得积分10
2秒前
角鸮完成签到,获得积分10
2秒前
zly完成签到 ,获得积分10
3秒前
雨霧雲完成签到,获得积分10
3秒前
qnqqq完成签到 ,获得积分10
4秒前
健壮的涑发布了新的文献求助10
4秒前
5秒前
5秒前
秋山伊夫完成签到,获得积分10
5秒前
入门的橙橙完成签到 ,获得积分10
5秒前
BONBON发布了新的文献求助10
6秒前
8秒前
TOM完成签到,获得积分10
8秒前
隐形曼青应助欣喜访旋采纳,获得10
9秒前
852应助Millie采纳,获得10
9秒前
龍Ryu完成签到,获得积分10
10秒前
内向凌兰发布了新的文献求助10
11秒前
伍秋望完成签到,获得积分10
11秒前
12秒前
13秒前
跳跃发布了新的文献求助10
14秒前
持卿应助宗磬采纳,获得20
14秒前
14秒前
花生油炒花生米完成签到 ,获得积分10
14秒前
Riki完成签到,获得积分10
16秒前
虚幻白玉发布了新的文献求助10
16秒前
德行天下完成签到,获得积分10
16秒前
Jenny应助lan采纳,获得10
17秒前
fztnh完成签到,获得积分10
17秒前
上官若男应助lyz666采纳,获得10
17秒前
顾念完成签到 ,获得积分10
17秒前
277发布了新的文献求助10
18秒前
小二郎应助GCD采纳,获得10
19秒前
hhhhhh完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808