Development and validation of deep-learning network for detecting congenital heart disease from multi-view multi-modal transthoracic echocardiograms

胸骨旁线 心室 接收机工作特性 经胸超声心动图 心脏病 心脏病学 医学 内科学 放射科
作者
Mingmei Cheng,Juntao Yang,Xiaofeng Liu,Yanzhong Wang,Qun Wu,Fangyun Wang,Pei Li,Binbin Wang,Xin Zhang,Wanqing Xie
出处
期刊:Research [American Association for the Advancement of Science]
卷期号:7 被引量:2
标识
DOI:10.34133/research.0319
摘要

Early detection and treatment of congenital heart disease (CHD) can significantly improve the prognosis of children. However, inexperienced sonographers often face difficulties in recognizing CHD through transthoracic echocardiogram (TTE) images. In this study, 2-dimensional (2D) and Doppler TTEs of children collected from 2 clinical groups from Beijing Children's Hospital between 2018 and 2022 were analyzed, including views of apical 4 chamber, subxiphoid long-axis view of 2 atria, parasternal long-axis view of the left ventricle, parasternal short-axis view of aorta, and suprasternal long-axis view. A deep learning (DL) framework was developed to identify cardiac views, integrate information from various views and modalities, visualize the high-risk region, and predict the probability of the subject being normal or having an atrial septal defect (ASD) or a ventricular septaldefect (VSD). A total of 1,932 children (1,255 healthy controls, 292 ASDs, and 385 VSDs) were collected from 2 clinical groups. For view classification, the DL model reached a mean [SD] accuracy of 0.989 [0.001]. For CHD screening, the model using both 2D and Doppler TTEs with 5 views achieved a mean [SD] area under the receiver operating characteristic curve (AUC) of 0.996 [0.000] and an accuracy of 0.994 [0.002] for within-center evaluation while reaching a mean [SD] AUC of 0.990 [0.003] and an accuracy of 0.993 [0.001] for cross-center test set. For the classification of healthy, ASD, and VSD, the model reached the mean [SD] accuracy of 0.991 [0.002] and 0.986 [0.001] for within- and cross-center evaluation, respectively. The DL models aggregating TTEs with more modalities and scanning views attained superior performance to approximate that of experienced sonographers. The incorporation of multiple views and modalities of TTEs in the model enables accurate identification of children with CHD in a noninvasive manner, suggesting the potential to enhance CHD detection performance and simplify the screening process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助aa采纳,获得10
1秒前
LG完成签到,获得积分10
1秒前
zeannezg发布了新的文献求助10
2秒前
2秒前
2秒前
青黄应助撒玉采纳,获得10
2秒前
天天快乐应助boxi采纳,获得10
3秒前
幸福的向彤完成签到,获得积分10
4秒前
4秒前
ser发布了新的文献求助10
4秒前
妖精完成签到 ,获得积分10
4秒前
5秒前
Leo000007发布了新的文献求助10
6秒前
orixero应助Liangyu采纳,获得10
6秒前
6秒前
眠眠清完成签到 ,获得积分10
8秒前
8秒前
聪明小黄发布了新的文献求助10
9秒前
9秒前
linkin完成签到 ,获得积分10
9秒前
ser完成签到,获得积分10
10秒前
Sadboy发布了新的文献求助10
10秒前
兴奋傲芙关注了科研通微信公众号
12秒前
小玉应助6wt采纳,获得10
12秒前
eason应助6wt采纳,获得10
12秒前
打打应助而与白醋采纳,获得10
12秒前
chengya完成签到,获得积分0
12秒前
扎扎拉鸡发布了新的文献求助20
12秒前
13秒前
makabaka完成签到,获得积分10
13秒前
14秒前
14秒前
赘婿应助ning采纳,获得10
14秒前
阳光怀亦发布了新的文献求助10
14秒前
linlin发布了新的文献求助10
14秒前
17秒前
杨召发布了新的文献求助10
17秒前
18秒前
是人我吃完成签到,获得积分20
18秒前
白色保温杯完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355