Intrusion Detection for Encrypted Flows Using Single Feature Based On Graph Integration Theory

计算机科学 加密 入侵检测系统 图论 特征(语言学) 理论计算机科学 数据挖掘 特征提取 模式识别(心理学) 人工智能 计算机安全 数学 语言学 哲学 组合数学
作者
Ying Han,Xinlei Wang,Mingshu He,Xiaojuan Wang,Shize Guo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17589-17601
标识
DOI:10.1109/jiot.2024.3360039
摘要

To ensure the privacy and security of Internet of Things data, encrypted transmission of data has become a common approach. However, this has also introduced limitations for the detection of malicious network flows, often requiring reliance on only a few selected features for categorizing malicious flows. In this paper, we proposed a novel Graph Integration Theory and applied it to construct graphs based solely on packet length sequences, aiming to enhance the detection capability of single-feature-based methods, such as packet length sequences. Our proposed approach not only demonstrated its applicability in binary and multi-class classification problems but also provided a detailed analysis of the underlying reasons for its effectiveness in detecting different types of attacks and in various classification networks. Additionally, we proposed the use of the Tree-Like structure to construct Traffic Interaction Graphs and verified that the Graph Integration Theory achieved excellent classification results in both the Tree-Like and Cross-Linked list structures. Specifically, the average detection accuracy achieved in the Tree-Like structure was 0.9842, while that in the Cross-Linked list structure was 0.9836. These results significantly outperformed those obtained using either original graph structure or packet length sequences alone for detection. In the ten-class classification problem, the proposed approach achieved a detection accuracy of 0.8557, which was much higher than the accuracy of 0.6252 obtained using only packet length sequences, as well as the accuracy of 0.6634 obtained using only the original graph structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的蛟凤应助从梦采纳,获得10
刚刚
刚刚
Serein完成签到,获得积分10
刚刚
刚刚
Orange应助王川采纳,获得10
1秒前
Flora发布了新的文献求助10
4秒前
4秒前
十二完成签到,获得积分10
4秒前
TaoJ发布了新的文献求助10
4秒前
慕青应助关我屁事采纳,获得10
4秒前
5秒前
向优秀的人靠近完成签到,获得积分10
5秒前
波比大王发布了新的文献求助10
5秒前
ZXCVB发布了新的文献求助10
5秒前
Akim应助czq采纳,获得10
5秒前
8秒前
言诚开发布了新的文献求助10
9秒前
科研小狗完成签到 ,获得积分10
9秒前
TaoJ完成签到,获得积分0
10秒前
在水一方应助失眠螃蟹采纳,获得10
10秒前
洁面乳完成签到 ,获得积分10
11秒前
染小诺完成签到,获得积分10
11秒前
11秒前
Gyr060307发布了新的文献求助10
11秒前
LaTeXer应助风清扬采纳,获得50
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
无花果应助言诚开采纳,获得10
14秒前
14秒前
传奇3应助小李采纳,获得50
15秒前
关我屁事发布了新的文献求助10
15秒前
whynot完成签到,获得积分10
15秒前
16秒前
十三完成签到,获得积分10
16秒前
16秒前
核桃发布了新的文献求助10
17秒前
寒冷猫咪发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助30
18秒前
路戳戳发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730174
求助须知:如何正确求助?哪些是违规求助? 5321976
关于积分的说明 15318160
捐赠科研通 4876827
什么是DOI,文献DOI怎么找? 2619662
邀请新用户注册赠送积分活动 1569070
关于科研通互助平台的介绍 1525722