Intrusion Detection for Encrypted Flows Using Single Feature Based On Graph Integration Theory

计算机科学 加密 入侵检测系统 图论 特征(语言学) 理论计算机科学 数据挖掘 特征提取 模式识别(心理学) 人工智能 计算机安全 数学 语言学 哲学 组合数学
作者
Ying Han,Xinlei Wang,Mingshu He,Xiaojuan Wang,Shize Guo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17589-17601
标识
DOI:10.1109/jiot.2024.3360039
摘要

To ensure the privacy and security of Internet of Things data, encrypted transmission of data has become a common approach. However, this has also introduced limitations for the detection of malicious network flows, often requiring reliance on only a few selected features for categorizing malicious flows. In this paper, we proposed a novel Graph Integration Theory and applied it to construct graphs based solely on packet length sequences, aiming to enhance the detection capability of single-feature-based methods, such as packet length sequences. Our proposed approach not only demonstrated its applicability in binary and multi-class classification problems but also provided a detailed analysis of the underlying reasons for its effectiveness in detecting different types of attacks and in various classification networks. Additionally, we proposed the use of the Tree-Like structure to construct Traffic Interaction Graphs and verified that the Graph Integration Theory achieved excellent classification results in both the Tree-Like and Cross-Linked list structures. Specifically, the average detection accuracy achieved in the Tree-Like structure was 0.9842, while that in the Cross-Linked list structure was 0.9836. These results significantly outperformed those obtained using either original graph structure or packet length sequences alone for detection. In the ten-class classification problem, the proposed approach achieved a detection accuracy of 0.8557, which was much higher than the accuracy of 0.6252 obtained using only packet length sequences, as well as the accuracy of 0.6634 obtained using only the original graph structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺然发布了新的文献求助10
刚刚
1秒前
bbb完成签到,获得积分10
1秒前
1秒前
asdfg123发布了新的文献求助10
2秒前
2秒前
研友_8RyzBZ发布了新的文献求助10
3秒前
周林夕16888完成签到,获得积分10
3秒前
Mingyue123完成签到,获得积分10
3秒前
wwwwpy完成签到,获得积分10
4秒前
认真搞科研啦完成签到,获得积分10
4秒前
XUYU发布了新的文献求助10
6秒前
干净绮山发布了新的文献求助10
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
litianyuan发布了新的文献求助20
10秒前
Yh完成签到,获得积分10
10秒前
10秒前
dyd发布了新的文献求助10
11秒前
任性鞋垫发布了新的文献求助10
12秒前
科研通AI6应助干净绮山采纳,获得10
12秒前
13秒前
doudoumiao发布了新的文献求助20
13秒前
cc完成签到,获得积分20
13秒前
nihao发布了新的文献求助10
15秒前
qq完成签到 ,获得积分10
15秒前
gzt完成签到 ,获得积分10
15秒前
大个应助惜海采纳,获得10
16秒前
在水一方应助asdfg123采纳,获得10
16秒前
情怀应助Clare采纳,获得10
16秒前
王静静发布了新的文献求助10
17秒前
shuang发布了新的文献求助10
18秒前
小昼发布了新的文献求助10
19秒前
19秒前
猪猪hero发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助xxxllllll采纳,获得10
21秒前
BowieHuang应助qxy采纳,获得20
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781