亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intrusion Detection for Encrypted Flows Using Single Feature Based On Graph Integration Theory

计算机科学 加密 入侵检测系统 图论 特征(语言学) 理论计算机科学 数据挖掘 特征提取 模式识别(心理学) 人工智能 计算机安全 数学 语言学 哲学 组合数学
作者
Ying Han,Xinlei Wang,Mingshu He,Xiaojuan Wang,Shize Guo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17589-17601
标识
DOI:10.1109/jiot.2024.3360039
摘要

To ensure the privacy and security of Internet of Things data, encrypted transmission of data has become a common approach. However, this has also introduced limitations for the detection of malicious network flows, often requiring reliance on only a few selected features for categorizing malicious flows. In this paper, we proposed a novel Graph Integration Theory and applied it to construct graphs based solely on packet length sequences, aiming to enhance the detection capability of single-feature-based methods, such as packet length sequences. Our proposed approach not only demonstrated its applicability in binary and multi-class classification problems but also provided a detailed analysis of the underlying reasons for its effectiveness in detecting different types of attacks and in various classification networks. Additionally, we proposed the use of the Tree-Like structure to construct Traffic Interaction Graphs and verified that the Graph Integration Theory achieved excellent classification results in both the Tree-Like and Cross-Linked list structures. Specifically, the average detection accuracy achieved in the Tree-Like structure was 0.9842, while that in the Cross-Linked list structure was 0.9836. These results significantly outperformed those obtained using either original graph structure or packet length sequences alone for detection. In the ten-class classification problem, the proposed approach achieved a detection accuracy of 0.8557, which was much higher than the accuracy of 0.6252 obtained using only packet length sequences, as well as the accuracy of 0.6634 obtained using only the original graph structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
ding应助沉静的万天采纳,获得10
7秒前
7秒前
8秒前
zrrr完成签到 ,获得积分10
8秒前
8秒前
科研通AI6.1应助Crw__采纳,获得10
15秒前
simon完成签到 ,获得积分10
19秒前
流川封完成签到,获得积分10
20秒前
烂漫靖柏完成签到 ,获得积分10
24秒前
25秒前
雪霁完成签到,获得积分10
26秒前
Crw__发布了新的文献求助10
34秒前
汪酱酱完成签到 ,获得积分10
35秒前
星辰大海应助坚强的唇膏采纳,获得10
51秒前
量子星尘发布了新的文献求助10
52秒前
风信子完成签到 ,获得积分10
53秒前
啵啵鱼发布了新的文献求助10
54秒前
qunna完成签到,获得积分10
54秒前
1分钟前
1分钟前
努力的淼淼完成签到 ,获得积分10
1分钟前
范丞丞完成签到 ,获得积分10
1分钟前
三点前我必睡完成签到 ,获得积分10
1分钟前
Rui发布了新的文献求助10
1分钟前
1分钟前
Akim应助等待的香魔采纳,获得30
1分钟前
啵啵鱼完成签到,获得积分20
1分钟前
昵称完成签到,获得积分0
1分钟前
整齐晓筠完成签到 ,获得积分10
1分钟前
1分钟前
Lisheng000完成签到 ,获得积分10
1分钟前
OCDer发布了新的文献求助10
1分钟前
1分钟前
1分钟前
西蓝花战士完成签到 ,获得积分10
1分钟前
zhangyue7777完成签到,获得积分10
1分钟前
1分钟前
最爱吃火锅完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788109
求助须知:如何正确求助?哪些是违规求助? 5704481
关于积分的说明 15473229
捐赠科研通 4916268
什么是DOI,文献DOI怎么找? 2646252
邀请新用户注册赠送积分活动 1593896
关于科研通互助平台的介绍 1548301