Intrusion Detection for Encrypted Flows Using Single Feature Based On Graph Integration Theory

计算机科学 加密 入侵检测系统 图论 特征(语言学) 理论计算机科学 数据挖掘 特征提取 模式识别(心理学) 人工智能 计算机安全 数学 语言学 哲学 组合数学
作者
Ying Han,Xinlei Wang,Mingshu He,Xiaojuan Wang,Shize Guo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17589-17601
标识
DOI:10.1109/jiot.2024.3360039
摘要

To ensure the privacy and security of Internet of Things data, encrypted transmission of data has become a common approach. However, this has also introduced limitations for the detection of malicious network flows, often requiring reliance on only a few selected features for categorizing malicious flows. In this paper, we proposed a novel Graph Integration Theory and applied it to construct graphs based solely on packet length sequences, aiming to enhance the detection capability of single-feature-based methods, such as packet length sequences. Our proposed approach not only demonstrated its applicability in binary and multi-class classification problems but also provided a detailed analysis of the underlying reasons for its effectiveness in detecting different types of attacks and in various classification networks. Additionally, we proposed the use of the Tree-Like structure to construct Traffic Interaction Graphs and verified that the Graph Integration Theory achieved excellent classification results in both the Tree-Like and Cross-Linked list structures. Specifically, the average detection accuracy achieved in the Tree-Like structure was 0.9842, while that in the Cross-Linked list structure was 0.9836. These results significantly outperformed those obtained using either original graph structure or packet length sequences alone for detection. In the ten-class classification problem, the proposed approach achieved a detection accuracy of 0.8557, which was much higher than the accuracy of 0.6252 obtained using only packet length sequences, as well as the accuracy of 0.6634 obtained using only the original graph structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘生淮南完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
李健应助haojinxiu采纳,获得10
4秒前
4秒前
云端北栀完成签到,获得积分10
5秒前
可爱的冷霜完成签到,获得积分10
6秒前
mmyhn发布了新的文献求助10
7秒前
英吹斯挺应助猪猪hero采纳,获得10
7秒前
收手吧大哥应助猪猪hero采纳,获得10
7秒前
我不爱池鱼应助猪猪hero采纳,获得10
7秒前
7秒前
7秒前
7秒前
哈里发发布了新的文献求助10
9秒前
momo完成签到,获得积分10
10秒前
10秒前
彭于晏应助友好若南采纳,获得10
13秒前
Skye完成签到 ,获得积分10
14秒前
14秒前
刘刘发布了新的文献求助10
15秒前
tiankong发布了新的文献求助10
15秒前
16秒前
友好小刺猬完成签到,获得积分10
16秒前
17秒前
19秒前
可以发布了新的文献求助10
20秒前
20秒前
ZW发布了新的文献求助10
20秒前
tiankong完成签到,获得积分10
21秒前
LL完成签到,获得积分10
22秒前
lin发布了新的文献求助10
23秒前
可爱的函函应助欢喜采纳,获得10
26秒前
xie69完成签到,获得积分10
26秒前
张张完成签到,获得积分10
27秒前
我是来开会的完成签到,获得积分10
28秒前
FashionBoy应助PPP采纳,获得10
29秒前
29秒前
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954504
求助须知:如何正确求助?哪些是违规求助? 3500506
关于积分的说明 11099678
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786251
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801717