Intrusion Detection for Encrypted Flows Using Single Feature Based On Graph Integration Theory

计算机科学 加密 入侵检测系统 图论 特征(语言学) 理论计算机科学 数据挖掘 特征提取 模式识别(心理学) 人工智能 计算机安全 数学 语言学 哲学 组合数学
作者
Ying Han,Xinlei Wang,Mingshu He,Xiaojuan Wang,Shize Guo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17589-17601
标识
DOI:10.1109/jiot.2024.3360039
摘要

To ensure the privacy and security of Internet of Things data, encrypted transmission of data has become a common approach. However, this has also introduced limitations for the detection of malicious network flows, often requiring reliance on only a few selected features for categorizing malicious flows. In this paper, we proposed a novel Graph Integration Theory and applied it to construct graphs based solely on packet length sequences, aiming to enhance the detection capability of single-feature-based methods, such as packet length sequences. Our proposed approach not only demonstrated its applicability in binary and multi-class classification problems but also provided a detailed analysis of the underlying reasons for its effectiveness in detecting different types of attacks and in various classification networks. Additionally, we proposed the use of the Tree-Like structure to construct Traffic Interaction Graphs and verified that the Graph Integration Theory achieved excellent classification results in both the Tree-Like and Cross-Linked list structures. Specifically, the average detection accuracy achieved in the Tree-Like structure was 0.9842, while that in the Cross-Linked list structure was 0.9836. These results significantly outperformed those obtained using either original graph structure or packet length sequences alone for detection. In the ten-class classification problem, the proposed approach achieved a detection accuracy of 0.8557, which was much higher than the accuracy of 0.6252 obtained using only packet length sequences, as well as the accuracy of 0.6634 obtained using only the original graph structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero完成签到,获得积分10
刚刚
2秒前
3秒前
6秒前
坦率店员发布了新的文献求助10
6秒前
8秒前
77发布了新的文献求助10
10秒前
一一应助虚心的鹭洋采纳,获得20
14秒前
15秒前
淡淡南莲发布了新的文献求助20
17秒前
木木杉完成签到 ,获得积分10
17秒前
壮观冬寒完成签到,获得积分10
17秒前
兴奋思天完成签到,获得积分10
18秒前
7185045完成签到,获得积分10
18秒前
勤恳安南完成签到,获得积分10
19秒前
7185045发布了新的文献求助10
20秒前
21秒前
千寻完成签到,获得积分10
22秒前
hgc完成签到,获得积分10
23秒前
24秒前
自信白凡完成签到,获得积分10
26秒前
桐桐应助7185045采纳,获得10
26秒前
嗨记得看发布了新的文献求助10
27秒前
29秒前
Lucas应助Steve采纳,获得10
33秒前
111完成签到,获得积分10
35秒前
chenn完成签到 ,获得积分10
36秒前
兴奋面包完成签到,获得积分10
41秒前
小白手套auv完成签到,获得积分10
41秒前
43秒前
希望天下0贩的0应助Steve采纳,获得10
44秒前
bkagyin应助科研通管家采纳,获得10
44秒前
我是老大应助科研通管家采纳,获得200
44秒前
44秒前
不配.应助科研通管家采纳,获得20
44秒前
不配.应助科研通管家采纳,获得20
44秒前
今后应助科研通管家采纳,获得10
44秒前
丘比特应助科研通管家采纳,获得10
44秒前
cdqiu完成签到,获得积分10
44秒前
44秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240830
求助须知:如何正确求助?哪些是违规求助? 2885518
关于积分的说明 8238987
捐赠科研通 2553959
什么是DOI,文献DOI怎么找? 1382080
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625079