作者
Jinting Li,Yuping Wei,Chuan Liu,Xingzhou Guo,Zhengru Liu,Luyun Zhang,Shenglan Bao,Xiaohan Wu,Xiaoli Wang,Jixiang Zhang,Weiguo Dong
摘要
Summary
Background & aims
2'-Fucosyllactose (2'-FL), the primary constituent of human milk oligosaccharides, has been identified as a potential regulator of inflammation in inflammatory bowel disease. Despite this recognition, the specific mechanisms through which 2'-FL alleviates ulcerative colitis (UC) remain ambiguous. This study seeks to investigate the potential anti-inflammatory properties of 2'-FL concerning intestinal inflammation and uncover the associated mechanisms. Methods
C57BL/6J mice were orally administered a daily dose of 500 mg/kg 2'-FL for 11 consecutive days, followed by the induction of colitis using 3 % (wt/vol) dextran sulfate sodium (DSS) for the final 6 days. Subsequently, a comprehensive range of techniques, including an Acyl–biotin exchange assay, fluorescein-isothiocyanate-labeled dextran assay, histopathology, ELISA, quantitative real-time PCR, Western blot, immunofluorescence staining, immunohistochemistry staining, Alcian blue-periodic acid schiff staining, TdT-mediated dUTP nick end labeling, transmission electron microscopy, iTRAQ quantitative proteomics, bioinformatics analysis, and the generation of signal transducer and activator of transcription 3 (STAT3) knockout mice, were employed to explore the relevant molecular mechanisms. Results
Administration of 2'-FL significantly ameliorated DSS-induced colitis in mice and enhanced the integrity of the intestinal mucosal barrier. 2'-FL downregulated the phosphorylation of STAT3 and inhibited STAT3-related signaling pathways in colon tissues, which, in turn, reduced inflammatory responses. Interestingly, knockdown of STAT3 attenuated the protective effects of 2'-FL, highlighting that 2'-FL-mediated inflammatory attenuation is dependent on STAT3 expression. Additionally, 2'-FL could influence STAT3 activation by modulating the palmitoylation and depalmitoylation of STAT3. Conclusions
2'-FL promotes the recovery of the intestinal mucosal barrier and suppresses inflammation in ulcerative colitis by inhibiting the palmitoylation and phosphorylation of STAT3.