Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 哲学 数学分析 光学 操作系统 分类器(UML) 语言学
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:288: 111454-111454 被引量:12
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小周周完成签到 ,获得积分10
刚刚
我蛋挞呢应助戽斗采纳,获得50
刚刚
万能图书馆应助jinyu采纳,获得10
1秒前
Geass发布了新的文献求助10
2秒前
2秒前
潇洒皮带完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
万信心发布了新的文献求助10
2秒前
2秒前
戚薇发布了新的文献求助10
2秒前
cwy完成签到,获得积分10
2秒前
taff完成签到,获得积分20
3秒前
受伤丹妗发布了新的文献求助10
3秒前
3秒前
犹豫的晓兰完成签到,获得积分20
4秒前
5秒前
5秒前
英俊的铭应助JUAN采纳,获得10
5秒前
5秒前
yangben完成签到,获得积分10
5秒前
科研通AI2S应助被动科研采纳,获得10
5秒前
5秒前
6秒前
快乐旭尧完成签到,获得积分10
6秒前
7秒前
赘婿应助灰灰采纳,获得10
7秒前
jstagey发布了新的文献求助10
8秒前
善学以致用应助戚薇采纳,获得10
8秒前
低语yaa发布了新的文献求助10
8秒前
清脆愫完成签到 ,获得积分0
8秒前
jinyu完成签到,获得积分10
8秒前
NATURECATCHER完成签到,获得积分10
9秒前
Ainhoa发布了新的文献求助10
10秒前
LLY完成签到,获得积分20
10秒前
小罗在无锡完成签到 ,获得积分10
10秒前
zwy109发布了新的文献求助10
10秒前
机灵紫萱完成签到,获得积分10
10秒前
酷波er应助後知後孓采纳,获得10
11秒前
可爱的函函应助受伤丹妗采纳,获得10
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709