Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 哲学 数学分析 光学 操作系统 分类器(UML) 语言学
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111454-111454 被引量:22
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小曾最棒啦完成签到 ,获得积分10
1秒前
3秒前
完美世界应助hesu采纳,获得10
4秒前
HJJHJH发布了新的文献求助10
5秒前
找文献呢发布了新的文献求助10
6秒前
6秒前
6秒前
QQ完成签到,获得积分10
6秒前
Orange应助zaaaz采纳,获得30
7秒前
禾风完成签到,获得积分10
7秒前
7秒前
斯文败类应助暮色将至采纳,获得10
9秒前
今后应助昏睡的洋葱采纳,获得10
9秒前
三寸光阴一个鑫应助Thinkol采纳,获得30
9秒前
vi6bjf发布了新的文献求助10
9秒前
嗯嗯完成签到 ,获得积分10
9秒前
零零完成签到 ,获得积分10
10秒前
乐乐应助科研通管家采纳,获得10
11秒前
罗非鱼应助科研通管家采纳,获得10
11秒前
痞子毛应助科研通管家采纳,获得10
11秒前
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
苗条凡完成签到 ,获得积分10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
吼吼应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
Gryphon应助科研通管家采纳,获得10
12秒前
Twonej应助科研通管家采纳,获得30
12秒前
Twonej应助科研通管家采纳,获得30
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679656
求助须知:如何正确求助?哪些是违规求助? 4992557
关于积分的说明 15170404
捐赠科研通 4839503
什么是DOI,文献DOI怎么找? 2593348
邀请新用户注册赠送积分活动 1546505
关于科研通互助平台的介绍 1504594