Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 哲学 数学分析 光学 操作系统 分类器(UML) 语言学
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111454-111454 被引量:22
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后的静柏完成签到,获得积分20
1秒前
哈哈哈完成签到,获得积分10
1秒前
深情安青应助可爱千兰采纳,获得10
1秒前
2秒前
ding应助ZJR采纳,获得10
2秒前
chenchen完成签到,获得积分10
2秒前
2秒前
3秒前
滴滴滴完成签到 ,获得积分10
3秒前
852应助Slby采纳,获得10
3秒前
4秒前
李健的小迷弟应助wangzhiqin采纳,获得10
5秒前
6秒前
chenchen发布了新的文献求助10
6秒前
殷勤的岱周完成签到,获得积分10
6秒前
叭叭叭发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
陈焕燃发布了新的文献求助10
8秒前
慕青应助xiaoqi采纳,获得10
9秒前
10秒前
FANGQUAN完成签到,获得积分10
11秒前
11秒前
13秒前
11完成签到 ,获得积分10
13秒前
13秒前
yangl完成签到 ,获得积分10
13秒前
墨痕发布了新的文献求助30
14秒前
14秒前
15秒前
15秒前
ding应助hull采纳,获得30
15秒前
15秒前
稳重的泽洋完成签到,获得积分10
16秒前
17秒前
FANGQUAN发布了新的文献求助10
17秒前
17秒前
18秒前
可爱千兰发布了新的文献求助10
18秒前
18秒前
隐形星空完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548412
求助须知:如何正确求助?哪些是违规求助? 4633745
关于积分的说明 14632589
捐赠科研通 4575424
什么是DOI,文献DOI怎么找? 2508974
邀请新用户注册赠送积分活动 1485169
关于科研通互助平台的介绍 1456179