Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 哲学 数学分析 光学 操作系统 分类器(UML) 语言学
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111454-111454 被引量:8
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
特兰克斯发布了新的文献求助10
刚刚
危机的尔蝶完成签到,获得积分10
刚刚
mcsmdxs发布了新的文献求助10
1秒前
ccalvintan发布了新的文献求助10
1秒前
2秒前
2秒前
头发乱了发布了新的文献求助10
3秒前
天天快乐应助DrYang采纳,获得10
3秒前
含糊发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
完美世界应助幸福胡萝卜采纳,获得10
5秒前
通~发布了新的文献求助10
5秒前
6秒前
科目三应助Arnold采纳,获得10
6秒前
润润轩轩发布了新的文献求助10
7秒前
宗笑晴发布了新的文献求助10
7秒前
lucky完成签到,获得积分10
7秒前
糖糖发布了新的文献求助10
8秒前
8秒前
跳跃尔容完成签到,获得积分10
9秒前
wyblobin完成签到,获得积分10
9秒前
9秒前
10秒前
沉默沛岚完成签到,获得积分10
10秒前
丰知然应助宇文宛菡采纳,获得10
10秒前
所所应助tu采纳,获得30
11秒前
mechefy完成签到,获得积分10
11秒前
鲤鱼萧完成签到,获得积分10
12秒前
宗笑晴完成签到,获得积分10
12秒前
13秒前
小蘑菇应助头发乱了采纳,获得10
13秒前
代萌萌发布了新的文献求助10
14秒前
jucy发布了新的文献求助50
14秒前
14秒前
Lz完成签到,获得积分10
14秒前
Hello应助葛辉辉采纳,获得10
14秒前
秦嘉旎完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762