Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 哲学 数学分析 光学 操作系统 分类器(UML) 语言学
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111454-111454 被引量:22
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金条完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
要减肥白开水完成签到,获得积分10
2秒前
ChristineJay完成签到,获得积分10
2秒前
20010完成签到,获得积分10
3秒前
SixDogs发布了新的文献求助13
4秒前
4秒前
搞笑地雷完成签到 ,获得积分10
4秒前
11完成签到,获得积分10
5秒前
贺格平发布了新的文献求助10
5秒前
小董完成签到,获得积分20
8秒前
BENpao123发布了新的文献求助10
8秒前
所所应助无问西东采纳,获得10
9秒前
9秒前
10秒前
bombing2048完成签到 ,获得积分10
11秒前
Hello应助谦让寄容采纳,获得10
11秒前
香蕉觅云应助Wenyilong采纳,获得10
11秒前
13秒前
lml发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
刻苦秋尽完成签到,获得积分20
14秒前
空白发布了新的文献求助10
14秒前
justin完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
科研通AI6应助lex采纳,获得10
16秒前
17秒前
Darius发布了新的文献求助10
18秒前
18秒前
CodeCraft应助现代芷波采纳,获得10
18秒前
18秒前
YH发布了新的文献求助10
19秒前
sdf完成签到,获得积分20
21秒前
无问西东发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648