亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 哲学 数学分析 光学 操作系统 分类器(UML) 语言学
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111454-111454 被引量:22
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
温不胜的破木吉他完成签到 ,获得积分10
1分钟前
1分钟前
kukudou2发布了新的文献求助10
1分钟前
我是老大应助信陵君无忌采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
曦颜发布了新的文献求助10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
cheng完成签到,获得积分10
2分钟前
群群完成签到,获得积分20
2分钟前
群群发布了新的文献求助10
3分钟前
3分钟前
smottom应助信陵君无忌采纳,获得10
3分钟前
Akim应助信陵君无忌采纳,获得10
3分钟前
熬夜波比应助信陵君无忌采纳,获得10
3分钟前
Ava应助信陵君无忌采纳,获得10
3分钟前
FashionBoy应助信陵君无忌采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
pups发布了新的文献求助20
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
李健应助pups采纳,获得20
4分钟前
科研通AI6应助信陵君无忌采纳,获得10
4分钟前
CipherSage应助信陵君无忌采纳,获得10
4分钟前
ikouyo完成签到 ,获得积分10
5分钟前
Wei发布了新的文献求助10
5分钟前
星辰大海应助飘逸的念烟采纳,获得10
5分钟前
5分钟前
Bystander发布了新的文献求助10
5分钟前
6分钟前
6分钟前
独特的鹅完成签到,获得积分10
6分钟前
6分钟前
走啊走应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671268
求助须知:如何正确求助?哪些是违规求助? 4913301
关于积分的说明 15134352
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586711
邀请新用户注册赠送积分活动 1540300
关于科研通互助平台的介绍 1498516