Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 哲学 数学分析 光学 操作系统 分类器(UML) 语言学
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111454-111454 被引量:22
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助甲基绿采纳,获得10
1秒前
文麒发布了新的文献求助10
1秒前
1秒前
思源应助勤劳夕阳采纳,获得10
2秒前
2秒前
Hmzek完成签到,获得积分10
3秒前
zyyy完成签到,获得积分10
4秒前
xt完成签到,获得积分10
4秒前
orixero应助xu采纳,获得10
5秒前
寂寞的寄文完成签到,获得积分10
5秒前
科研通AI6应助三金采纳,获得10
5秒前
ding应助serendipity采纳,获得10
6秒前
吃西瓜皮完成签到,获得积分10
6秒前
渡劫完成签到,获得积分10
7秒前
7秒前
水123发布了新的文献求助10
7秒前
11秒前
Acer完成签到 ,获得积分10
11秒前
阿六儿完成签到,获得积分10
12秒前
共享精神应助栾玉采纳,获得10
12秒前
俊秀的莫茗关注了科研通微信公众号
13秒前
Ava应助rmbsLHC采纳,获得10
13秒前
怕黑捕发布了新的文献求助10
14秒前
粥粥粥发布了新的文献求助10
14秒前
15秒前
滕皓轩发布了新的文献求助10
16秒前
勤恳完成签到,获得积分10
16秒前
17秒前
zy发布了新的文献求助10
17秒前
Yun发布了新的文献求助30
17秒前
三金完成签到,获得积分10
18秒前
20秒前
威武好吐司完成签到 ,获得积分10
20秒前
rmbsLHC完成签到,获得积分10
20秒前
Morris完成签到,获得积分10
21秒前
勤劳夕阳发布了新的文献求助10
21秒前
22秒前
Ivy发布了新的文献求助10
23秒前
23秒前
chenchunlan96发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603755
求助须知:如何正确求助?哪些是违规求助? 4688731
关于积分的说明 14855695
捐赠科研通 4694961
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814