Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 数学分析 哲学 语言学 分类器(UML) 光学 操作系统
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111454-111454 被引量:8
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Absinthe关注了科研通微信公众号
刚刚
模糊中正应助清茶采纳,获得30
3秒前
atlas wu发布了新的文献求助10
4秒前
Arjun给翁梦山的求助进行了留言
4秒前
Kem发布了新的文献求助10
4秒前
33应助顺利鸡采纳,获得10
5秒前
杨春天完成签到,获得积分10
9秒前
13秒前
17秒前
司空豁发布了新的文献求助10
18秒前
xtutang完成签到,获得积分10
19秒前
19秒前
酷炫的小紫完成签到 ,获得积分10
19秒前
xiaohao发布了新的文献求助10
21秒前
24秒前
司空豁完成签到,获得积分10
26秒前
27秒前
27秒前
29秒前
Absinthe发布了新的文献求助10
30秒前
33应助研友_LOoomL采纳,获得10
31秒前
含糊发布了新的文献求助10
31秒前
32秒前
一程发布了新的文献求助10
33秒前
科研人才发布了新的文献求助10
34秒前
阿琦完成签到 ,获得积分10
35秒前
小马甲应助atlas wu采纳,获得10
39秒前
41秒前
情怀应助xiaohao采纳,获得10
43秒前
43秒前
46秒前
852应助奶牛在吃豆采纳,获得30
47秒前
LUME发布了新的文献求助20
47秒前
48秒前
坚持很酷完成签到,获得积分10
48秒前
777发布了新的文献求助10
49秒前
可爱的函函应助飞飞采纳,获得10
51秒前
在水一方应助含糊采纳,获得10
52秒前
顺利鸡发布了新的文献求助10
58秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Metal Additive Manufacturing for Propulsion Applications 600
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3366752
求助须知:如何正确求助?哪些是违规求助? 2986613
关于积分的说明 8723469
捐赠科研通 2669091
什么是DOI,文献DOI怎么找? 1461774
科研通“疑难数据库(出版商)”最低求助积分说明 676583
邀请新用户注册赠送积分活动 667808