Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 哲学 数学分析 光学 操作系统 分类器(UML) 语言学
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111454-111454 被引量:22
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JOUJOU完成签到,获得积分20
刚刚
刚刚
eric888应助mmol采纳,获得200
刚刚
刚刚
刘gugu发布了新的文献求助10
刚刚
orixero应助普外科老白采纳,获得10
1秒前
研友_LkD29n完成签到 ,获得积分10
2秒前
Ava应助逸风望采纳,获得10
2秒前
2秒前
科研通AI6应助小黑采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
JOUJOU发布了新的文献求助10
4秒前
4秒前
Yeshenyue完成签到,获得积分10
4秒前
今后应助从容冷之采纳,获得10
5秒前
congconglyu完成签到,获得积分10
5秒前
大模型应助天真千易采纳,获得10
5秒前
风清扬发布了新的文献求助10
5秒前
天天快乐应助天真千易采纳,获得10
5秒前
负责的皮卡丘应助xiaoting采纳,获得30
5秒前
汉堡包应助天真千易采纳,获得10
6秒前
NexusExplorer应助天真千易采纳,获得10
6秒前
情怀应助天真千易采纳,获得10
6秒前
彭于晏应助天真千易采纳,获得10
6秒前
可爱的函函应助天真千易采纳,获得10
6秒前
打打应助天真千易采纳,获得10
6秒前
赘婿应助天真千易采纳,获得10
6秒前
Jasper应助天真千易采纳,获得30
6秒前
7秒前
orixero应助ruaruaburua采纳,获得10
8秒前
韩梅完成签到,获得积分10
9秒前
哥斯拉发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
老大车完成签到,获得积分20
11秒前
12秒前
研友_VZG7GZ应助一坨采纳,获得20
12秒前
LijinJiang发布了新的文献求助10
12秒前
刘gugu完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525198
求助须知:如何正确求助?哪些是违规求助? 4615517
关于积分的说明 14548794
捐赠科研通 4553583
什么是DOI,文献DOI怎么找? 2495376
邀请新用户注册赠送积分活动 1475913
关于科研通互助平台的介绍 1447670