Point-to-Pixel Prompting for Point Cloud Analysis With Pre-Trained Image Models

计算机科学 点云 人工智能 像素 计算机视觉 分割 推论 点(几何) 投影(关系代数) 边距(机器学习) 特征(语言学) 领域(数学分析) 模式识别(心理学) 机器学习 数学 算法 语言学 数学分析 哲学 几何学
作者
Ziyi Wang,Yongming Rao,Xumin Yu,Jie Zhou,Jiwen Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (6): 4381-4397 被引量:2
标识
DOI:10.1109/tpami.2024.3354961
摘要

Nowadays, pre-training big models on large-scale datasets has achieved great success and dominated many downstream tasks in natural language processing and 2D vision, while pre-training in 3D vision is still under development. In this paper, we provide a new perspective of transferring the pre-trained knowledge from 2D domain to 3D domain with Point-to-Pixel Prompting in data space and Pixel-to-Point distillation in feature space, exploiting shared knowledge in images and point clouds that display the same visual world. Following the principle of prompting engineering, Point-to-Pixel Prompting transforms point clouds into colorful images with geometry-preserved projection and geometry-aware coloring. Then the pre-trained image models can be directly implemented for point cloud tasks without structural changes or weight modifications. With projection correspondence in feature space, Pixel-to-Point distillation further regards pre-trained image models as the teacher model and distills pre-trained 2D knowledge to student point cloud models, remarkably enhancing inference efficiency and model capacity for point cloud analysis. We conduct extensive experiments in both object classification and scene segmentation under various settings to demonstrate the superiority of our method. In object classification, we reveal the important scale-up trend of Point-to-Pixel Prompting and attain 90.3% accuracy on ScanObjectNN dataset, surpassing previous literature by a large margin. In scene-level semantic segmentation, our method outperforms traditional 3D analysis approaches and shows competitive capacity in dense prediction tasks. Code is available at https://github.com/wangzy22/P2P .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助水123采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
义气莫茗发布了新的文献求助10
1秒前
无花果应助mayun95采纳,获得10
1秒前
狂野萤给abby的求助进行了留言
2秒前
Sakurasamada完成签到,获得积分10
2秒前
jiejie发布了新的文献求助10
3秒前
3秒前
lyl发布了新的文献求助10
3秒前
董嘉景完成签到,获得积分10
4秒前
Ber发布了新的文献求助10
4秒前
丁言笑发布了新的文献求助10
4秒前
早日成发布了新的文献求助10
4秒前
4秒前
冯梦颖发布了新的文献求助10
4秒前
QIQI发布了新的文献求助10
5秒前
6秒前
6秒前
Lii开心发布了新的文献求助30
8秒前
8秒前
9秒前
深情安青应助开朗的幻桃采纳,获得10
10秒前
耍酷问兰发布了新的文献求助10
11秒前
111完成签到,获得积分10
11秒前
11秒前
cola121发布了新的文献求助10
11秒前
宋宋宋2完成签到,获得积分10
12秒前
jelly10发布了新的文献求助30
12秒前
Lucas应助失眠的夏柳采纳,获得10
13秒前
打打应助撖堡包采纳,获得30
13秒前
laruijoint完成签到,获得积分10
14秒前
超级幼旋应助迷路的夏之采纳,获得10
14秒前
15秒前
zjtttt发布了新的文献求助10
15秒前
在水一方应助jiejie采纳,获得10
15秒前
15秒前
科目三应助拼搏幻翠采纳,获得50
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514