Point-to-Pixel Prompting for Point Cloud Analysis With Pre-Trained Image Models

计算机科学 点云 人工智能 像素 计算机视觉 分割 推论 点(几何) 投影(关系代数) 边距(机器学习) 特征(语言学) 领域(数学分析) 模式识别(心理学) 机器学习 数学 算法 语言学 数学分析 哲学 几何学
作者
Ziyi Wang,Yongming Rao,Xumin Yu,Jie Zhou,Jiwen Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (6): 4381-4397 被引量:2
标识
DOI:10.1109/tpami.2024.3354961
摘要

Nowadays, pre-training big models on large-scale datasets has achieved great success and dominated many downstream tasks in natural language processing and 2D vision, while pre-training in 3D vision is still under development. In this paper, we provide a new perspective of transferring the pre-trained knowledge from 2D domain to 3D domain with Point-to-Pixel Prompting in data space and Pixel-to-Point distillation in feature space, exploiting shared knowledge in images and point clouds that display the same visual world. Following the principle of prompting engineering, Point-to-Pixel Prompting transforms point clouds into colorful images with geometry-preserved projection and geometry-aware coloring. Then the pre-trained image models can be directly implemented for point cloud tasks without structural changes or weight modifications. With projection correspondence in feature space, Pixel-to-Point distillation further regards pre-trained image models as the teacher model and distills pre-trained 2D knowledge to student point cloud models, remarkably enhancing inference efficiency and model capacity for point cloud analysis. We conduct extensive experiments in both object classification and scene segmentation under various settings to demonstrate the superiority of our method. In object classification, we reveal the important scale-up trend of Point-to-Pixel Prompting and attain 90.3% accuracy on ScanObjectNN dataset, surpassing previous literature by a large margin. In scene-level semantic segmentation, our method outperforms traditional 3D analysis approaches and shows competitive capacity in dense prediction tasks. Code is available at https://github.com/wangzy22/P2P .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Daisy发布了新的文献求助10
刚刚
刚刚
冷艳易文发布了新的文献求助20
刚刚
xia发布了新的文献求助10
刚刚
1秒前
怕黑晓亦完成签到,获得积分20
1秒前
1秒前
铯氰的蚁人完成签到 ,获得积分10
1秒前
1秒前
orixero应助Shaynin采纳,获得10
2秒前
2秒前
orixero应助HeySue采纳,获得10
2秒前
文献求助完成签到,获得积分10
2秒前
鱼仔发布了新的文献求助20
3秒前
3秒前
李健应助33采纳,获得30
3秒前
4秒前
淡淡向卉发布了新的文献求助10
4秒前
诸天真发布了新的文献求助80
4秒前
4秒前
4秒前
亮总发布了新的文献求助10
4秒前
土豪的念梦完成签到,获得积分10
4秒前
emmaguo713发布了新的文献求助10
4秒前
刘钊扬完成签到,获得积分10
5秒前
5秒前
Twonej应助haaappy采纳,获得40
5秒前
善学以致用应助LuciusHe采纳,获得30
6秒前
6秒前
九月鹰飞发布了新的文献求助10
6秒前
sss发布了新的文献求助10
6秒前
6秒前
6秒前
Akim应助fucccboi采纳,获得10
7秒前
英俊的铭应助科研人采纳,获得10
7秒前
7秒前
7秒前
Dasha发布了新的文献求助10
8秒前
8秒前
Pt完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721