Point-to-Pixel Prompting for Point Cloud Analysis With Pre-Trained Image Models

计算机科学 点云 人工智能 像素 计算机视觉 分割 推论 点(几何) 投影(关系代数) 边距(机器学习) 特征(语言学) 领域(数学分析) 模式识别(心理学) 机器学习 数学 算法 数学分析 语言学 哲学 几何学
作者
Ziyi Wang,Yongming Rao,Xumin Yu,Jie Zhou,Jiwen Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (6): 4381-4397 被引量:2
标识
DOI:10.1109/tpami.2024.3354961
摘要

Nowadays, pre-training big models on large-scale datasets has achieved great success and dominated many downstream tasks in natural language processing and 2D vision, while pre-training in 3D vision is still under development. In this paper, we provide a new perspective of transferring the pre-trained knowledge from 2D domain to 3D domain with Point-to-Pixel Prompting in data space and Pixel-to-Point distillation in feature space, exploiting shared knowledge in images and point clouds that display the same visual world. Following the principle of prompting engineering, Point-to-Pixel Prompting transforms point clouds into colorful images with geometry-preserved projection and geometry-aware coloring. Then the pre-trained image models can be directly implemented for point cloud tasks without structural changes or weight modifications. With projection correspondence in feature space, Pixel-to-Point distillation further regards pre-trained image models as the teacher model and distills pre-trained 2D knowledge to student point cloud models, remarkably enhancing inference efficiency and model capacity for point cloud analysis. We conduct extensive experiments in both object classification and scene segmentation under various settings to demonstrate the superiority of our method. In object classification, we reveal the important scale-up trend of Point-to-Pixel Prompting and attain 90.3% accuracy on ScanObjectNN dataset, surpassing previous literature by a large margin. In scene-level semantic segmentation, our method outperforms traditional 3D analysis approaches and shows competitive capacity in dense prediction tasks. Code is available at https://github.com/wangzy22/P2P .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘金凤发布了新的文献求助10
刚刚
烟花应助SWJ采纳,获得10
刚刚
刚刚
Louis发布了新的文献求助10
刚刚
刚刚
helen发布了新的文献求助10
刚刚
科研通AI6应助金金采纳,获得10
1秒前
牛马日常完成签到,获得积分10
1秒前
LucyLi完成签到,获得积分10
1秒前
iNk应助小满采纳,获得10
2秒前
GQ发布了新的文献求助10
2秒前
尘路遐远发布了新的文献求助10
3秒前
飞流直下发布了新的文献求助10
3秒前
明朗发布了新的文献求助10
3秒前
斯文败类应助ryan采纳,获得10
4秒前
5秒前
5秒前
YDM完成签到,获得积分10
5秒前
Jeff发布了新的文献求助10
5秒前
Micalblame完成签到,获得积分10
5秒前
孤独又夏完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
宇哥完成签到,获得积分10
9秒前
9秒前
充电宝应助Louis采纳,获得10
9秒前
9秒前
牛牛牛完成签到,获得积分10
9秒前
拿起蜡笔小新完成签到 ,获得积分10
10秒前
11秒前
跳跃的邪欢完成签到,获得积分10
11秒前
学术界的小喽啰完成签到,获得积分10
11秒前
外向映雁发布了新的文献求助10
11秒前
bcy完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069