Point-to-Pixel Prompting for Point Cloud Analysis With Pre-Trained Image Models

计算机科学 点云 人工智能 像素 计算机视觉 分割 推论 点(几何) 投影(关系代数) 边距(机器学习) 特征(语言学) 领域(数学分析) 模式识别(心理学) 机器学习 数学 算法 数学分析 语言学 哲学 几何学
作者
Ziyi Wang,Yongming Rao,Xumin Yu,Jie Zhou,Jiwen Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (6): 4381-4397 被引量:2
标识
DOI:10.1109/tpami.2024.3354961
摘要

Nowadays, pre-training big models on large-scale datasets has achieved great success and dominated many downstream tasks in natural language processing and 2D vision, while pre-training in 3D vision is still under development. In this paper, we provide a new perspective of transferring the pre-trained knowledge from 2D domain to 3D domain with Point-to-Pixel Prompting in data space and Pixel-to-Point distillation in feature space, exploiting shared knowledge in images and point clouds that display the same visual world. Following the principle of prompting engineering, Point-to-Pixel Prompting transforms point clouds into colorful images with geometry-preserved projection and geometry-aware coloring. Then the pre-trained image models can be directly implemented for point cloud tasks without structural changes or weight modifications. With projection correspondence in feature space, Pixel-to-Point distillation further regards pre-trained image models as the teacher model and distills pre-trained 2D knowledge to student point cloud models, remarkably enhancing inference efficiency and model capacity for point cloud analysis. We conduct extensive experiments in both object classification and scene segmentation under various settings to demonstrate the superiority of our method. In object classification, we reveal the important scale-up trend of Point-to-Pixel Prompting and attain 90.3% accuracy on ScanObjectNN dataset, surpassing previous literature by a large margin. In scene-level semantic segmentation, our method outperforms traditional 3D analysis approaches and shows competitive capacity in dense prediction tasks. Code is available at https://github.com/wangzy22/P2P .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Turnbackt1me完成签到,获得积分10
刚刚
刚刚
Fei完成签到,获得积分20
3秒前
bound发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
乔乔兔应助东方越彬采纳,获得20
7秒前
chang发布了新的文献求助10
8秒前
11秒前
11秒前
12秒前
12秒前
852应助元万天采纳,获得30
13秒前
13秒前
Lucas应助橘栀采纳,获得10
14秒前
半树发布了新的文献求助10
16秒前
义气尔安发布了新的文献求助10
17秒前
18秒前
伊丽娜发布了新的文献求助20
19秒前
20秒前
21秒前
ChristopherYang完成签到 ,获得积分10
21秒前
斯文败类应助bound采纳,获得10
22秒前
22秒前
23秒前
23秒前
samuel完成签到,获得积分10
24秒前
r222发布了新的文献求助10
25秒前
uki发布了新的文献求助10
25秒前
小可爱521发布了新的文献求助10
26秒前
明亮剑完成签到,获得积分10
28秒前
温柔的老头完成签到,获得积分10
28秒前
只爱吃肠粉完成签到,获得积分10
30秒前
30秒前
我是老大应助Ann采纳,获得10
31秒前
31秒前
yydragen应助羽言采纳,获得30
31秒前
33秒前
Belinda发布了新的文献求助10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962670
求助须知:如何正确求助?哪些是违规求助? 3508680
关于积分的说明 11142146
捐赠科研通 3241403
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872935
科研通“疑难数据库(出版商)”最低求助积分说明 803517