Point-to-Pixel Prompting for Point Cloud Analysis With Pre-Trained Image Models

计算机科学 点云 人工智能 像素 计算机视觉 分割 推论 点(几何) 投影(关系代数) 边距(机器学习) 特征(语言学) 领域(数学分析) 模式识别(心理学) 机器学习 数学 算法 数学分析 语言学 哲学 几何学
作者
Ziyi Wang,Yongming Rao,Xumin Yu,Jie Zhou,Jiwen Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (6): 4381-4397 被引量:1
标识
DOI:10.1109/tpami.2024.3354961
摘要

Nowadays, pre-training big models on large-scale datasets has achieved great success and dominated many downstream tasks in natural language processing and 2D vision, while pre-training in 3D vision is still under development. In this paper, we provide a new perspective of transferring the pre-trained knowledge from 2D domain to 3D domain with Point-to-Pixel Prompting in data space and Pixel-to-Point distillation in feature space, exploiting shared knowledge in images and point clouds that display the same visual world. Following the principle of prompting engineering, Point-to-Pixel Prompting transforms point clouds into colorful images with geometry-preserved projection and geometry-aware coloring. Then the pre-trained image models can be directly implemented for point cloud tasks without structural changes or weight modifications. With projection correspondence in feature space, Pixel-to-Point distillation further regards pre-trained image models as the teacher model and distills pre-trained 2D knowledge to student point cloud models, remarkably enhancing inference efficiency and model capacity for point cloud analysis. We conduct extensive experiments in both object classification and scene segmentation under various settings to demonstrate the superiority of our method. In object classification, we reveal the important scale-up trend of Point-to-Pixel Prompting and attain 90.3% accuracy on ScanObjectNN dataset, surpassing previous literature by a large margin. In scene-level semantic segmentation, our method outperforms traditional 3D analysis approaches and shows competitive capacity in dense prediction tasks. Code is available at https://github.com/wangzy22/P2P .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乐子发布了新的文献求助10
1秒前
香蕉觅云应助咚咚采纳,获得10
1秒前
慕青应助花生米一粒粒采纳,获得10
2秒前
3秒前
kleine完成签到 ,获得积分10
5秒前
5秒前
陈俊霖完成签到,获得积分10
6秒前
等你下课完成签到,获得积分20
6秒前
Singularity应助柠檬采纳,获得20
6秒前
小宋爱科研完成签到 ,获得积分10
8秒前
等你下课发布了新的文献求助20
9秒前
陈俊霖发布了新的文献求助10
9秒前
9秒前
乐乐应助小乐子采纳,获得10
10秒前
11秒前
yudandan@CJLU发布了新的文献求助10
11秒前
从容芮应助醉熏的伊采纳,获得30
13秒前
江枫完成签到 ,获得积分10
15秒前
bsn发布了新的文献求助10
16秒前
16秒前
搜集达人应助按揭采纳,获得10
16秒前
weidongzhu发布了新的文献求助10
17秒前
我是站长才怪应助twob采纳,获得10
18秒前
嗯哼应助高兴的夜天采纳,获得20
19秒前
Owen应助伏月八采纳,获得10
21秒前
852应助yangxt-iga采纳,获得10
21秒前
Hello应助风181013采纳,获得10
22秒前
22秒前
22秒前
丘比特应助任性土豆采纳,获得10
22秒前
guojingjing发布了新的文献求助10
23秒前
23秒前
完美世界应助zty采纳,获得10
23秒前
从容芮应助zzuwxj采纳,获得10
24秒前
25秒前
陌笙发布了新的文献求助10
25秒前
Daidai应助超帅的西牛采纳,获得20
25秒前
mochi发布了新的文献求助10
25秒前
weidongzhu完成签到,获得积分20
26秒前
大力的含卉完成签到,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310754
求助须知:如何正确求助?哪些是违规求助? 2943470
关于积分的说明 8515381
捐赠科研通 2618826
什么是DOI,文献DOI怎么找? 1431439
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649675