Evaluation of the Current Status of Artificial Intelligence for Endourology Patient Education: A Blind Comparison of ChatGPT and Google Bard against Traditional Information Resources

可读性 医学 清晰 阅读(过程) 利克特量表 一致性 医学教育 内科学 心理学 计算机科学 发展心理学 生物化学 化学 政治学 法学 程序设计语言
作者
Christopher Connors,Kavita Gupta,Johnathan A. Khusid,Raymond Khargi,Alan Yaghoubian,Micah Levy,Blair Gallante,William Atallah,Mantu Gupta
出处
期刊:Journal of Endourology [Mary Ann Liebert, Inc.]
被引量:2
标识
DOI:10.1089/end.2023.0696
摘要

Introduction Artificial intelligence (AI) platforms such as ChatGPT and Bard are increasingly utilized to answer patient healthcare questions. We present the first study to blindly evaluate AI-generated responses to common endourology patient questions against official patient education materials. Methods 32 questions and answers spanning kidney stones, ureteral stents, BPH, and UTUC were extracted from official Urology Care Foundation (UCF) patient education documents. The same questions were input into ChatGPT 4.0 and Bard, limiting responses to within  10% of the word count of the corresponding UCF response to ensure fair comparison. Six endourologists blindly evaluated responses from each platform using Likert scales for accuracy, clarity, comprehensiveness, and patient utility. Reviewers identified which response they believed was not AI-generated. Lastly, Flesch-Kincaid Reading Grade Level formulas assessed the readability of each platform response. Ratings were compared using ANOVA and Chi-Square tests. Results ChatGPT responses were rated the highest across all categories including accuracy, comprehensiveness, clarity, and patient utility while UCF answers were consistently scored the lowest, all p<0.01. Sub-analysis revealed that this trend was consistent across question categories (i.e., kidney stones, BPH, etc.). However, AI-generated responses were more likely to be classified at an advanced reading level while UCF responses showed improved readability (college or higher reading level: ChatGPT = 100%, Bard = 66%, UCF = 19%), p<0.001. When asked to identify which answer was not AI-generated, 54.2% of responses indicated ChatGPT, 26.6% indicated Bard, and only 19.3% correctly identified it as the UCF response. Conclusions In a blind evaluation, AI-generated responses from ChatGPT and Bard surpassed the quality of official patient education materials in endourology, suggesting that current AI platforms are already a reliable resource for basic urologic care information. AI-generated responses do, however, tend to require a higher reading level, which may limit their applicability to a broader audience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Drtaoao完成签到 ,获得积分10
刚刚
科研通AI2S应助wei采纳,获得10
刚刚
1秒前
依古比古完成签到,获得积分10
1秒前
无情向薇应助linguobin采纳,获得10
1秒前
YW完成签到,获得积分10
1秒前
2秒前
2秒前
崔伟发布了新的文献求助10
2秒前
小葛完成签到,获得积分10
2秒前
shao应助54zxy采纳,获得10
2秒前
觉皇完成签到,获得积分10
3秒前
3秒前
韩soso发布了新的文献求助10
3秒前
我是老大应助伍教授采纳,获得10
3秒前
偏我来时不逢春完成签到,获得积分10
4秒前
爆螺钉发布了新的文献求助10
4秒前
Owen应助Erling采纳,获得10
5秒前
打屁飞完成签到,获得积分10
5秒前
二十五发布了新的文献求助20
6秒前
linnn完成签到,获得积分10
6秒前
8秒前
一个火蓉果啊完成签到,获得积分10
8秒前
菠萝炒饭应助典雅的苗条采纳,获得10
8秒前
FUTURE发布了新的文献求助10
8秒前
立na完成签到,获得积分10
8秒前
9秒前
liuli完成签到 ,获得积分10
9秒前
Loong完成签到,获得积分10
9秒前
珠珠崽子完成签到 ,获得积分10
9秒前
EmmaZhu完成签到,获得积分10
10秒前
xima完成签到 ,获得积分10
11秒前
11秒前
April Mei完成签到,获得积分10
11秒前
11秒前
星辰大海应助重要的一凡采纳,获得10
12秒前
12秒前
12秒前
12秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198