Scaling transformer neural networks for skillful and reliable medium-range weather forecasting

计算机科学 可预测性 变压器 人工神经网络 缩放比例 推论 天气预报 集合预报 机器学习 人工智能 气象学 工程类 量子力学 电气工程 物理 电压 数学 几何学
作者
Tung Thanh Nguyen,Rohan Shah,Hritik Bansal,Troy Arcomano,Sandeep Madireddy,Romit Maulik,V. R. Kotamarthi,Ian Foster,Aditya Grover
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.03876
摘要

Weather forecasting is a fundamental problem for anticipating and mitigating the impacts of climate change. Recently, data-driven approaches for weather forecasting based on deep learning have shown great promise, achieving accuracies that are competitive with operational systems. However, those methods often employ complex, customized architectures without sufficient ablation analysis, making it difficult to understand what truly contributes to their success. Here we introduce Stormer, a simple transformer model that achieves state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone. We identify the key components of Stormer through careful empirical analyses, including weather-specific embedding, randomized dynamics forecast, and pressure-weighted loss. At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals. During inference, this allows us to produce multiple forecasts for a target lead time and combine them to obtain better forecast accuracy. On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days, while requiring orders-of-magnitude less training data and compute. Additionally, we demonstrate Stormer's favorable scaling properties, showing consistent improvements in forecast accuracy with increases in model size and training tokens. Code and checkpoints will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淳于一江完成签到,获得积分20
刚刚
Xx发布了新的文献求助40
刚刚
1秒前
1秒前
2秒前
小蘑菇应助廖念采纳,获得10
4秒前
6秒前
苏苏发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
平常寒烟完成签到,获得积分10
8秒前
123456完成签到 ,获得积分10
8秒前
科研笨男人完成签到,获得积分10
9秒前
9秒前
芍药完成签到 ,获得积分10
10秒前
11秒前
20发布了新的文献求助10
12秒前
闻风听雨发布了新的文献求助10
13秒前
Xx完成签到,获得积分10
13秒前
14秒前
15秒前
笛九完成签到 ,获得积分10
15秒前
17秒前
万能图书馆应助诗意采纳,获得10
18秒前
VV完成签到,获得积分10
21秒前
隆龙完成签到,获得积分10
21秒前
Jiatong7完成签到,获得积分10
21秒前
leaolf应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
fendy应助科研通管家采纳,获得50
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
LaTeXer应助科研通管家采纳,获得100
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301