Scaling transformer neural networks for skillful and reliable medium-range weather forecasting

计算机科学 可预测性 变压器 人工神经网络 缩放比例 推论 天气预报 集合预报 机器学习 人工智能 气象学 工程类 量子力学 电气工程 物理 电压 数学 几何学
作者
Tung Thanh Nguyen,Rohan Shah,Hritik Bansal,Troy Arcomano,Sandeep Madireddy,Romit Maulik,V. R. Kotamarthi,Ian Foster,Aditya Grover
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.03876
摘要

Weather forecasting is a fundamental problem for anticipating and mitigating the impacts of climate change. Recently, data-driven approaches for weather forecasting based on deep learning have shown great promise, achieving accuracies that are competitive with operational systems. However, those methods often employ complex, customized architectures without sufficient ablation analysis, making it difficult to understand what truly contributes to their success. Here we introduce Stormer, a simple transformer model that achieves state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone. We identify the key components of Stormer through careful empirical analyses, including weather-specific embedding, randomized dynamics forecast, and pressure-weighted loss. At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals. During inference, this allows us to produce multiple forecasts for a target lead time and combine them to obtain better forecast accuracy. On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days, while requiring orders-of-magnitude less training data and compute. Additionally, we demonstrate Stormer's favorable scaling properties, showing consistent improvements in forecast accuracy with increases in model size and training tokens. Code and checkpoints will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
小小富应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
Asahi完成签到 ,获得积分10
1秒前
研友_ngkyGn应助科研通管家采纳,获得10
1秒前
Loooong应助科研通管家采纳,获得20
1秒前
yar应助科研通管家采纳,获得10
1秒前
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
研友_ngkyGn应助科研通管家采纳,获得10
2秒前
白色之牙完成签到,获得积分10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
韩凡发布了新的文献求助10
2秒前
大个应助tmxx采纳,获得10
3秒前
mm发布了新的文献求助10
3秒前
淡淡816完成签到,获得积分10
4秒前
4秒前
无心的天薇完成签到,获得积分10
4秒前
4秒前
5秒前
[刘小婷]发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
啊嚟完成签到 ,获得积分10
6秒前
6秒前
6秒前
超文献完成签到,获得积分10
7秒前
9秒前
牛牛发布了新的文献求助10
9秒前
Panini发布了新的文献求助10
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961103
求助须知:如何正确求助?哪些是违规求助? 3507388
关于积分的说明 11135834
捐赠科研通 3239867
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803152