吸附
全氟辛酸
密度泛函理论
化学
溶剂化
分子
无机化学
从头算
计算化学
化学工程
物理化学
有机化学
工程类
作者
Mohamed S. Mohamed,Brian P. Chaplin,Ahmed A. Abokifa
出处
期刊:Chemosphere
[Elsevier]
日期:2024-04-08
卷期号:357: 141849-141849
被引量:2
标识
DOI:10.1016/j.chemosphere.2024.141849
摘要
Electrocatalytic destruction of per- and polyfluoroalkyl substances (PFAS) is an emerging approach for treatment of PFAS-contaminated water. In this study, a systematic ab initio investigation of PFAS adsorption on Ni, a widely used electrocatalyst, was conducted by means of dispersion-corrected Density Functional Theory (DFT) calculations. The objective of this investigation was to elucidate the adsorption characteristics and charge transfer mechanisms of different PFAS molecules on Ni surfaces. PFAS adsorption on three of the most thermodynamically favorable Ni surface facets, namely (001), (110), and (111), was investigated. Additionally, the role of PFAS chain length and functional group was studied by comparing the adsorption characteristics of different PFAS compounds, namely perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS), and perfluorobutanoic acid (PFBA). For each PFAS molecule-Ni surface facet pair, different adsorption configurations were considered. Further calculations were carried out to reveal the effect of solvation, pre-adsorbed atomic hydrogen (H), and surface defects on the adsorption energy. Overall, the results revealed that the adsorption of PFAS on Ni surfaces is energetically favorable, and that the adsorption is primarily driven by the functional groups. The presence of preadsorbed H and the inclusion of solvation produced less exothermic adsorption energies, while surface vacancy defects showed mixed effects on PFAS adsorption. Taken together, the results of this study suggest that Ni is a promising electrocatalyst for PFAS adsorption and destruction, and that proper control for the exposed facets and surface defects could enhance the adsorption stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI