Remaining useful life estimation of bearing via temporal convolutional networks enhanced by a gated convolutional unit

计算机科学 卷积神经网络 估计 单位(环理论) 人工智能 模式识别(心理学) 数学 数学教育 经济 管理
作者
Yujie Qin,Fanfan Gan,Baizhan Xia,Mi Dong,Lizhang Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108308-108308 被引量:14
标识
DOI:10.1016/j.engappai.2024.108308
摘要

In the field of prognostics and health management (PHM) for industrial equipment and systems, the estimation of remaining useful life (RUL) constitutes a fundamental task. A reliable and accurate method for estimating the RUL is therefore essential. This paper proposes a dynamic self-adaptive ensemble model, aimed at improving the rolling bearing RUL prediction. This model integrates an adaptive multi-scale feature extractor, a gated convolutional unit (GCU) and temporal convolutional networks (TCN). Through a redesign of the data flow, this model directly incorporates multi-scale comprehensive feature evaluation indicators into the neural network data flow, significantly enhancing the model's feature extraction capabilities. Subsequently, the study extends the traditional TCN by incorporating the GCU module and its gating mechanisms, further strengthening the model's capacity to capture long-term dependencies in sequence tasks. Experimental results demonstrate that, compared to existing state-of-the-art (SOTA) models, our method achieves at least a 10% increase in the prediction accuracy on two public run-to-failure bearing datasets. Beyond the tested datasets, the architecture that directly maps multi-scale evaluation indicators into the structure of neural network data flows also holds potential for broader application across diverse PHM tasks, promising significant improvements in the industrial safety and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想吃螺蛳粉应助小巧向秋采纳,获得10
刚刚
Ava应助小巧向秋采纳,获得10
刚刚
可爱的函函应助小巧向秋采纳,获得10
刚刚
充电宝应助小巧向秋采纳,获得10
刚刚
刚刚
阿yueyue发布了新的文献求助10
1秒前
iuuuu完成签到 ,获得积分10
1秒前
大模型应助hf采纳,获得10
2秒前
3秒前
求助人员发布了新的文献求助10
4秒前
sevenel完成签到,获得积分10
4秒前
酷波er应助111采纳,获得30
5秒前
善学以致用应助大麦迪采纳,获得10
6秒前
6秒前
zp560发布了新的文献求助10
6秒前
LaTeXer应助叶上采纳,获得100
6秒前
yiqi发布了新的文献求助10
7秒前
102755完成签到,获得积分10
8秒前
聪明帅哥完成签到,获得积分10
8秒前
10秒前
星辰大海应助Rhea采纳,获得10
11秒前
11秒前
seon完成签到,获得积分10
11秒前
wddd333333完成签到,获得积分10
12秒前
ljw完成签到 ,获得积分10
12秒前
xiaoying完成签到 ,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
求助人员发布了新的文献求助30
14秒前
14秒前
lkk发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
斯文败类应助嬴政飞采纳,获得10
16秒前
丑到哭发布了新的文献求助10
16秒前
16秒前
Akim应助缓慢易云采纳,获得10
17秒前
17秒前
田様应助怕黑明雪采纳,获得10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620548
求助须知:如何正确求助?哪些是违规求助? 4705184
关于积分的说明 14930630
捐赠科研通 4762246
什么是DOI,文献DOI怎么找? 2551059
邀请新用户注册赠送积分活动 1513711
关于科研通互助平台的介绍 1474633