Research on pavement crack detection algorithm based on adversarial and depth-guided network

对抗制 计算机科学 算法 人工智能
作者
Guosheng Xu,Jinglong Xing,Junfang Hu
标识
DOI:10.1117/12.3021078
摘要

In recent years, deep learning algorithms, such as convolutional neural networks, have shown promising results in pavement crack detection. However, in practical engineering applications, existing pavement crack detection methods often rely on block-level crack labeling due to the challenges in producing pixel-level pavement crack labeling images. This approach is often accompanied by the difficulty of recognizing fine cracks in pavements. In this paper, we propose a method for detecting pavement cracks based on adversarial and depth-guided networks. The method consists of two components: a pixel-level pavement crack marker extraction algorithm based on edge detection, and a pavement crack detection algorithm based on adversarial and depth-guided networks (UCRGNet). The former can extract pixel-level crack markers from block-level cracks, thus effectively addressing the issues of generating pixel-level crack marker images and achieving finer marker granularity. The latter is based on the concept of generative confrontation, which improves the network's feedback to small crack regions by providing necessary supervision to the generated pavement crack segmentation images. Additionally, it incorporates a bootstrap filtering module and an attention mechanism to address the issue of information loss, thereby enhancing the model's ability to accurately identify fine cracks. The pavement crack detection method proposed in this paper is based on adversarial and depth-guided networks. It has been tested on the NCDataset dataset, and the results demonstrate that its accuracy, precision, and recall in recognizing pavement cracks are higher compared to other similar algorithms. Specifically, the method achieves an accuracy of 95.89%, precision of 67.96%, and recall of 65.93%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落霞与孤鹜齐飞完成签到,获得积分10
3秒前
JUNE完成签到,获得积分20
11秒前
整齐的忆彤完成签到,获得积分10
16秒前
袁青寒发布了新的文献求助200
21秒前
ahui完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
江月年完成签到 ,获得积分10
24秒前
24秒前
与离完成签到 ,获得积分10
31秒前
fxy完成签到 ,获得积分10
34秒前
Panini完成签到 ,获得积分10
36秒前
仝富贵完成签到,获得积分10
37秒前
尼莫完成签到,获得积分10
37秒前
草莓熊1215完成签到 ,获得积分10
39秒前
七个小矮人完成签到,获得积分10
42秒前
Joker_Li完成签到,获得积分10
42秒前
若水完成签到 ,获得积分10
45秒前
科研小子完成签到 ,获得积分10
50秒前
JuliaWang完成签到 ,获得积分10
51秒前
孙文杰完成签到 ,获得积分10
51秒前
小杨完成签到,获得积分20
54秒前
叁月二完成签到,获得积分10
56秒前
56秒前
Shrimp完成签到 ,获得积分10
59秒前
勤劳宛菡完成签到 ,获得积分10
1分钟前
zxzb完成签到,获得积分10
1分钟前
居里姐姐完成签到 ,获得积分0
1分钟前
mengmenglv完成签到 ,获得积分0
1分钟前
迈克老狼发布了新的文献求助10
1分钟前
123完成签到,获得积分10
1分钟前
吕嫣娆完成签到 ,获得积分10
1分钟前
争气完成签到 ,获得积分10
1分钟前
平淡寄瑶完成签到,获得积分20
1分钟前
柚C美式完成签到 ,获得积分10
1分钟前
kysl完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
鹏826完成签到 ,获得积分0
1分钟前
JW流年完成签到 ,获得积分10
1分钟前
冠心没有病完成签到,获得积分10
1分钟前
wxnice完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015