Improvement and optimization of coal dust concentration detection technology: Based on the 3σ criterion and the Kalman filtering composite algorithm

卡尔曼滤波器 复合数 计算机科学 算法 优化算法 人工智能 数学优化 数学
作者
Wen Nie,Liu Fei,Changwei Xu,Huaitong Li,Huitian Peng,Yanyan Liu,Felicie Ilele Mwabaima
出处
期刊:Flow Measurement and Instrumentation [Elsevier]
卷期号:: 102598-102598 被引量:1
标识
DOI:10.1016/j.flowmeasinst.2024.102598
摘要

Due to the inherent time delay in dust concentration data transmission, dust reduction equipment is unable to respond according to the current moment's dust concentration. Hence, the focus of mine dust concentration detection technology extends beyond the current dust concentration to accurately predicting the next moment's dust concentration, allowing a response window for dust reduction equipment, leading to more optimal dust reduction effects. This necessitates the introduction of the Kalman filtering algorithm. Despite the traditional single Kalman filtering algorithm's ability to make certain dust concentration predictions, it is constrained by high-temperature, high-humidity underground environments and electromagnetic pulse signal interference from fan and coal mining machine operations, with an error rate reaching up to 40%, seriously disrupting underground dust reduction equipment. However, the composite Kalman filtering algorithm incorporating the 3σ rule effectively eliminates bad values and removes instability from the underground environment and noise, rendering it applicable to most complex environments, providing accurate predicted concentrations for dust reduction equipment, and boosting overall universality. This study designed a fusion algorithm based on the Pauta criterion and Kalman filter to further optimize the dust concentration detection technology based on electrostatic induction. The sensor's model and measuring principle were first analyzed, and the initial calibration and precision testing of the sensor using the experimental system were completed. The dust concentration fluctuation characteristics were then modeled with Matlab, and the noise variance was estimated to process and filter the dust concentration data with the Pauta criterion, Kalman filter, and fusion algorithm respectively. The accuracy of the dust concentration sensor was tested again after applying the fusion algorithm, which proved to significantly enhance the stability and accuracy of the electrostatic induction-based dust concentration sensor. This study has critical implications for coal mine dust concentration monitoring and coal miner occupational health protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
上官若男应助酶没美镁采纳,获得10
2秒前
木马病毒完成签到 ,获得积分10
4秒前
山海之间完成签到,获得积分10
4秒前
千里发布了新的文献求助10
5秒前
淡淡菠萝完成签到 ,获得积分10
5秒前
图图发布了新的文献求助10
5秒前
田様应助的的的的的采纳,获得10
6秒前
CipherSage应助tleeny采纳,获得10
7秒前
眼睛大花生完成签到,获得积分10
7秒前
的确关注了科研通微信公众号
7秒前
隐形曼青应助An采纳,获得10
7秒前
坦率敏发布了新的文献求助10
7秒前
深情安青应助积极的中蓝采纳,获得10
9秒前
9秒前
李神奇完成签到,获得积分10
10秒前
13秒前
zhang完成签到 ,获得积分10
16秒前
16秒前
16秒前
朴实的天晴完成签到,获得积分10
17秒前
17秒前
内向苡完成签到,获得积分10
18秒前
18秒前
Nora发布了新的文献求助10
20秒前
allove发布了新的文献求助10
20秒前
万能图书馆应助木虫采纳,获得10
21秒前
今后应助CC采纳,获得10
21秒前
搜集达人应助千里采纳,获得10
22秒前
小张发布了新的文献求助10
22秒前
LD发布了新的文献求助10
23秒前
nana完成签到,获得积分10
25秒前
微笑的涛发布了新的文献求助10
25秒前
Nora完成签到,获得积分10
26秒前
莉诺亚发布了新的文献求助10
28秒前
hutian完成签到,获得积分10
28秒前
三三不吃辣完成签到,获得积分10
28秒前
29秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143605
求助须知:如何正确求助?哪些是违规求助? 2795002
关于积分的说明 7813063
捐赠科研通 2451122
什么是DOI,文献DOI怎么找? 1304258
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601386