Federated Dynamic Client Selection for Fairness Guarantee in Heterogeneous Edge Computing

计算机科学 GSM演进的增强数据速率 选择(遗传算法) 分布式计算 公平性度量 计算机网络 边缘计算 操作系统 电信 人工智能 吞吐量 无线
作者
Ying-Chi Mao,Lijuan Shen,Jun Wu,Ping Ping,Jie Wu
出处
期刊:Journal of Computer Science and Technology [Springer Science+Business Media]
卷期号:39 (1): 139-158
标识
DOI:10.1007/s11390-023-2972-9
摘要

Federated learning has emerged as a distributed learning paradigm by training at each client and aggregating at a parameter server. System heterogeneity hinders stragglers from responding to the server in time with huge communication costs. Although client grouping in federated learning can solve the straggler problem, the stochastic selection strategy in client grouping neglects the impact of data distribution within each group. Besides, current client grouping approaches make clients suffer unfair participation, leading to biased performances for different clients. In order to guarantee the fairness of client participation and mitigate biased local performances, we propose a federated dynamic client selection method based on data representativity (FedSDR). FedSDR clusters clients into groups correlated with their own local computational efficiency. To estimate the significance of client datasets, we design a novel data representativity evaluation scheme based on local data distribution. Furthermore, the two most representative clients in each group are selected to optimize the global model. Finally, the DYNAMIC-SELECT algorithm updates local computational efficiency and data representativity states to regroup clients after periodic average aggregation. Evaluations on real datasets show that FedSDR improves client participation by 27.4%, 37.9%, and 23.3% compared with FedAvg, TiFL, and FedSS, respectively, taking fairness into account in federated learning. In addition, FedSDR surpasses FedAvg, FedGS, and FedMS by 21.32%, 20.4%, and 6.90%, respectively, in local test accuracy variance, balancing the performance bias of the global model across clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HeAuBook应助阳二采纳,获得10
刚刚
刚刚
刚刚
酷奔完成签到 ,获得积分10
刚刚
神说要有光完成签到,获得积分10
1秒前
欣慰的星月完成签到,获得积分10
1秒前
熬夜通关中完成签到,获得积分10
1秒前
1秒前
风衣拖地完成签到 ,获得积分10
1秒前
HeAuBook应助akkk626采纳,获得20
1秒前
bkagyin应助李建科采纳,获得10
2秒前
端庄的芹完成签到 ,获得积分10
2秒前
知然完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助150
4秒前
4秒前
桑榆发布了新的文献求助10
4秒前
小橘子完成签到 ,获得积分20
4秒前
4秒前
姜折酒发布了新的文献求助10
5秒前
斯文败类应助婧欣媱采纳,获得10
5秒前
早点发SCI完成签到,获得积分10
5秒前
打打应助欣慰的星月采纳,获得10
6秒前
sssshhh发布了新的文献求助10
6秒前
6秒前
Hindiii完成签到,获得积分10
6秒前
雷123发布了新的文献求助10
6秒前
6秒前
想吃辣堡发布了新的文献求助10
6秒前
6秒前
7秒前
我是老大应助clot777采纳,获得10
7秒前
甄晓溪发布了新的文献求助10
8秒前
丁芍药完成签到,获得积分10
8秒前
JZY完成签到 ,获得积分20
8秒前
Orange应助YLX采纳,获得10
9秒前
zhanghuan完成签到,获得积分10
9秒前
9秒前
CodeCraft应助Refuel采纳,获得10
9秒前
Ann完成签到,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5108016
求助须知:如何正确求助?哪些是违规求助? 4317168
关于积分的说明 13449874
捐赠科研通 4146463
什么是DOI,文献DOI怎么找? 2272181
邀请新用户注册赠送积分活动 1274523
关于科研通互助平台的介绍 1212463