Federated Dynamic Client Selection for Fairness Guarantee in Heterogeneous Edge Computing

计算机科学 GSM演进的增强数据速率 选择(遗传算法) 分布式计算 公平性度量 计算机网络 边缘计算 操作系统 电信 人工智能 吞吐量 无线
作者
Ying-Chi Mao,Lijuan Shen,Jun Wu,Ping Ping,Jie Wu
出处
期刊:Journal of Computer Science and Technology [Springer Science+Business Media]
卷期号:39 (1): 139-158
标识
DOI:10.1007/s11390-023-2972-9
摘要

Federated learning has emerged as a distributed learning paradigm by training at each client and aggregating at a parameter server. System heterogeneity hinders stragglers from responding to the server in time with huge communication costs. Although client grouping in federated learning can solve the straggler problem, the stochastic selection strategy in client grouping neglects the impact of data distribution within each group. Besides, current client grouping approaches make clients suffer unfair participation, leading to biased performances for different clients. In order to guarantee the fairness of client participation and mitigate biased local performances, we propose a federated dynamic client selection method based on data representativity (FedSDR). FedSDR clusters clients into groups correlated with their own local computational efficiency. To estimate the significance of client datasets, we design a novel data representativity evaluation scheme based on local data distribution. Furthermore, the two most representative clients in each group are selected to optimize the global model. Finally, the DYNAMIC-SELECT algorithm updates local computational efficiency and data representativity states to regroup clients after periodic average aggregation. Evaluations on real datasets show that FedSDR improves client participation by 27.4%, 37.9%, and 23.3% compared with FedAvg, TiFL, and FedSS, respectively, taking fairness into account in federated learning. In addition, FedSDR surpasses FedAvg, FedGS, and FedMS by 21.32%, 20.4%, and 6.90%, respectively, in local test accuracy variance, balancing the performance bias of the global model across clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BENpao123发布了新的文献求助10
1秒前
NexusExplorer应助ruoyu111采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
周周发布了新的文献求助10
4秒前
5秒前
酷波er应助零蝉采纳,获得10
8秒前
舒心靖琪完成签到 ,获得积分10
9秒前
239287完成签到,获得积分10
11秒前
Owen应助macxinn采纳,获得10
13秒前
14秒前
16秒前
时尚丹寒完成签到 ,获得积分10
16秒前
知胜zjl完成签到 ,获得积分10
18秒前
零蝉发布了新的文献求助10
22秒前
老黑完成签到,获得积分10
23秒前
Jinyang完成签到 ,获得积分10
23秒前
xh完成签到,获得积分10
25秒前
不想做实验完成签到,获得积分10
26秒前
yanyimeng完成签到,获得积分10
27秒前
28秒前
sera发布了新的文献求助10
35秒前
agent完成签到 ,获得积分10
39秒前
卡卡完成签到,获得积分10
41秒前
米妮完成签到,获得积分10
44秒前
灰色与青完成签到,获得积分10
44秒前
46秒前
婷婷完成签到,获得积分20
47秒前
过于喧嚣的孤独完成签到,获得积分10
47秒前
Di完成签到 ,获得积分10
48秒前
48秒前
Cai发布了新的文献求助10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761818
求助须知:如何正确求助?哪些是违规求助? 3305596
关于积分的说明 10134822
捐赠科研通 3019634
什么是DOI,文献DOI怎么找? 1658239
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751