Teaching Plan Generation and Evaluation With GPT-4: Unleashing the Potential of LLM in Instructional Design

计算机科学 平面图(考古学) 教学设计 人机交互 工程管理 多媒体 工程类 历史 考古
作者
Bihao Hu,Longwei Zheng,Jiayi Zhu,L. Ding,Yilei Wang,Xiaoqing Gu
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 1471-1485 被引量:1
标识
DOI:10.1109/tlt.2024.3384765
摘要

This study explores and analyzes the specific performance of Large Language Models (LLMs) in instructional design, aiming to unveil their potential strengths and possible weaknesses. Recently, the influence of LLMs has gradually increased in multiple fields, yet exploratory research on their application in education remains relatively scarce. In response to this situation, our research, grounded in Pedagogical Content Knowledge (PCK) theory, initially formulated an instructional design framework based on mathematical problem chains and corresponding prompt instructions. Subsequently, a comprehensive tool for assessing LLM's instructional design capabilities was developed. Utilizing GPT-4, a high school mathematics teaching plan dataset was generated. Finally, the performance of LLMs in instructional design was evaluated. The evaluation results revealed that the teaching plans generated by LLMs excel in setting instructional objectives, identifying teaching priorities, organizing problem chains and teaching activities, articulating subject content, and selecting methods and strategies. Particularly commendable performance was noted in the modules of statistics and functions. However, there is room for improvement in aspects related to mathematical culture and interdisciplinary assessment, as well as in the geometry and algebra modules. Lastly, this study proposes initiatives such as LLM Prompt-based teacher training and the integration of mathematics-focused LLMs. These suggestions aim to advance personalized instructional design and professional development of teachers, offering educators new insights into the in-depth application of LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵雪杰发布了新的文献求助10
1秒前
唯一完成签到 ,获得积分20
1秒前
无铆钉连接完成签到,获得积分10
1秒前
优雅涔雨完成签到,获得积分10
2秒前
haorui完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助xinlei2023采纳,获得10
2秒前
小姚完成签到,获得积分10
2秒前
4秒前
浅浅的完成签到 ,获得积分10
4秒前
务实大神完成签到,获得积分10
5秒前
lcr完成签到,获得积分10
5秒前
LEEJ完成签到,获得积分10
5秒前
尊敬乐蕊发布了新的文献求助10
6秒前
杨杨完成签到 ,获得积分10
6秒前
帅气的可乐完成签到,获得积分10
7秒前
杨等等完成签到,获得积分10
7秒前
8秒前
LL完成签到,获得积分10
8秒前
乐乐应助友好的钢笔采纳,获得10
8秒前
MKY完成签到,获得积分10
10秒前
清爽冬莲完成签到 ,获得积分10
10秒前
科目三应助ws340822采纳,获得10
10秒前
10秒前
小白想抱大佬腿完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
乾雨完成签到 ,获得积分10
12秒前
西西歪发布了新的文献求助30
12秒前
VelesAlexei完成签到,获得积分10
13秒前
黄科研完成签到,获得积分10
13秒前
打工人完成签到,获得积分10
13秒前
xxxgoldxsx完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
小橘完成签到,获得积分10
15秒前
16秒前
隐形曼青应助十字勋章采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134243
求助须知:如何正确求助?哪些是违规求助? 2785100
关于积分的说明 7770199
捐赠科研通 2440666
什么是DOI,文献DOI怎么找? 1297493
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792