Low-abundance proteins-based label-free SERS approach for high precision detection of liver cancer with different stages

化学 肝癌 丰度(生态学) 癌症 计算生物学 纳米技术 色谱法 生态学 内科学 医学 生物 材料科学
作者
Tong Sun,Yamin Lin,Yun Yu,Siqi Gao,Xingen Gao,Hongyi Zhang,Kecan Lin,Juqiang Lin
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1304: 342518-342518 被引量:5
标识
DOI:10.1016/j.aca.2024.342518
摘要

Surface-enhanced Raman scattering (SERS) technology have unique advantages of rapid, simple, and highly sensitive in the detection of serum, it can be used for the detection of liver cancer. However, some protein biomarkers in body fluids are often present at ultra-low concentrations and severely interfered with by the high-abundance proteins (HAPs), which will affect the detection of specificity and accuracy in cancer screening based on the SERS immunoassay. Clearly, there is a need for an unlabeled SERS method based on low abundance proteins, which is rapid, noninvasive, and capable of high precision detection and screening of liver cancer. Serum samples were collected from 60 patients with liver cancer (27 patients with stage T1 and T2 liver cancer, 33 patients with stage T3 and T4 liver cancer) and 40 healthy volunteers. Herein, immunoglobulin and albumin were separated by immune sorption and Cohn ethanol fractionation. Then, the low abundance protein (LAPs) was enriched, and high-quality SERS spectral signals were detected and obtained. Finally, combined with the principal component analysis-linear discriminant analysis (PCA-LDA) algorithm, the SERS spectrum of early liver cancer (T1-T2) and advanced liver cancer (T3-T4) could be well distinguished from normal people, and the accuracy rate was 98.5% and 100%, respectively. Moreover, SERS technology based on serum LAPs extraction combined with the partial least square-support vector machine (PLS-SVM) successfully realized the classification and prediction of normal volunteers and liver cancer patients with different tumor (T) stages, and the diagnostic accuracy of PLS-SVM reached 87.5% in the unknown testing set. The experimental results show that the serum LAPs SERS detection combined with multivariate statistical algorithms can be used for effectively distinguishing liver cancer patients from healthy volunteers, and even achieved the screening of early liver cancer with high accuracy (T1 and T2 stage). These results showed that serum LAPs SERS detection combined with a multivariate statistical diagnostic algorithm has certain application potential in early cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttrr完成签到,获得积分10
1秒前
zheng发布了新的文献求助10
1秒前
Jadedew完成签到,获得积分10
1秒前
JamesPei应助我迷了鹿采纳,获得10
1秒前
lx发布了新的文献求助30
2秒前
2秒前
ziyuixnshi发布了新的文献求助10
3秒前
3秒前
Ava应助demian采纳,获得10
3秒前
Tireastani应助刘四毛采纳,获得10
4秒前
ally完成签到,获得积分10
5秒前
搬砖的冰美式完成签到,获得积分10
5秒前
丞123完成签到,获得积分10
5秒前
大型海狮完成签到,获得积分10
6秒前
Hyh_发布了新的文献求助10
6秒前
天天快乐应助lzh采纳,获得10
7秒前
zpz发布了新的文献求助10
7秒前
李爱国应助SAODEN采纳,获得10
7秒前
苹果丝完成签到 ,获得积分10
7秒前
9秒前
9秒前
9秒前
www完成签到,获得积分10
10秒前
zxm完成签到,获得积分10
10秒前
北念霜oD4完成签到,获得积分10
10秒前
11秒前
111完成签到 ,获得积分10
11秒前
123完成签到,获得积分10
11秒前
淡水痕完成签到,获得积分10
11秒前
11秒前
乔垣结衣完成签到,获得积分10
12秒前
呆呆完成签到 ,获得积分10
12秒前
ginkgoleaf发布了新的文献求助10
12秒前
飘逸鸵鸟发布了新的文献求助10
13秒前
月下萤火完成签到,获得积分20
13秒前
13秒前
demian完成签到,获得积分20
14秒前
zjc1111完成签到,获得积分10
14秒前
莫封叶完成签到,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582