Low-abundance proteins-based label-free SERS approach for high precision detection of liver cancer with different stages

化学 肝癌 丰度(生态学) 癌症 计算生物学 纳米技术 色谱法 生态学 内科学 医学 生物 材料科学
作者
Tong Sun,Yamin Lin,Yun Yu,Siqi Gao,Xingen Gao,Hongyi Zhang,Kecan Lin,Juqiang Lin
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1304: 342518-342518 被引量:2
标识
DOI:10.1016/j.aca.2024.342518
摘要

Surface-enhanced Raman scattering (SERS) technology have unique advantages of rapid, simple, and highly sensitive in the detection of serum, it can be used for the detection of liver cancer. However, some protein biomarkers in body fluids are often present at ultra-low concentrations and severely interfered with by the high-abundance proteins (HAPs), which will affect the detection of specificity and accuracy in cancer screening based on the SERS immunoassay. Clearly, there is a need for an unlabeled SERS method based on low abundance proteins, which is rapid, noninvasive, and capable of high precision detection and screening of liver cancer. Serum samples were collected from 60 patients with liver cancer (27 patients with stage T1 and T2 liver cancer, 33 patients with stage T3 and T4 liver cancer) and 40 healthy volunteers. Herein, immunoglobulin and albumin were separated by immune sorption and Cohn ethanol fractionation. Then, the low abundance protein (LAPs) was enriched, and high-quality SERS spectral signals were detected and obtained. Finally, combined with the principal component analysis-linear discriminant analysis (PCA-LDA) algorithm, the SERS spectrum of early liver cancer (T1-T2) and advanced liver cancer (T3-T4) could be well distinguished from normal people, and the accuracy rate was 98.5% and 100%, respectively. Moreover, SERS technology based on serum LAPs extraction combined with the partial least square-support vector machine (PLS-SVM) successfully realized the classification and prediction of normal volunteers and liver cancer patients with different tumor (T) stages, and the diagnostic accuracy of PLS-SVM reached 87.5% in the unknown testing set. The experimental results show that the serum LAPs SERS detection combined with multivariate statistical algorithms can be used for effectively distinguishing liver cancer patients from healthy volunteers, and even achieved the screening of early liver cancer with high accuracy (T1 and T2 stage). These results showed that serum LAPs SERS detection combined with a multivariate statistical diagnostic algorithm has certain application potential in early cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助酷炫思天采纳,获得10
2秒前
星空下的皮先生完成签到,获得积分10
2秒前
cuduoduo发布了新的文献求助10
3秒前
在水一方应助王金娥采纳,获得10
3秒前
4秒前
SICHEN发布了新的文献求助20
6秒前
6秒前
机灵夏云完成签到,获得积分10
7秒前
SN应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
11秒前
13秒前
贺雪发布了新的文献求助10
16秒前
16秒前
肥波发布了新的文献求助20
16秒前
16秒前
燕儿完成签到,获得积分10
17秒前
风评完成签到,获得积分10
18秒前
18秒前
酷炫思天发布了新的文献求助10
19秒前
祁芷蕊完成签到 ,获得积分10
20秒前
去去完成签到 ,获得积分10
21秒前
特立独行的熊完成签到,获得积分10
22秒前
星辰大海应助酷炫思天采纳,获得10
24秒前
萧瑟处完成签到,获得积分10
24秒前
kiki完成签到 ,获得积分10
24秒前
SICHEN完成签到,获得积分10
25秒前
26秒前
瞬华完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161006
求助须知:如何正确求助?哪些是违规求助? 2812229
关于积分的说明 7895058
捐赠科研通 2471142
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086