Low-abundance proteins-based label-free SERS approach for high precision detection of liver cancer with different stages

化学 肝癌 丰度(生态学) 癌症 计算生物学 纳米技术 色谱法 生态学 内科学 医学 生物 材料科学
作者
Tong Sun,Yamin Lin,Yun Yu,Siqi Gao,Xingen Gao,Hongyi Zhang,Kecan Lin,Juqiang Lin
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1304: 342518-342518 被引量:5
标识
DOI:10.1016/j.aca.2024.342518
摘要

Surface-enhanced Raman scattering (SERS) technology have unique advantages of rapid, simple, and highly sensitive in the detection of serum, it can be used for the detection of liver cancer. However, some protein biomarkers in body fluids are often present at ultra-low concentrations and severely interfered with by the high-abundance proteins (HAPs), which will affect the detection of specificity and accuracy in cancer screening based on the SERS immunoassay. Clearly, there is a need for an unlabeled SERS method based on low abundance proteins, which is rapid, noninvasive, and capable of high precision detection and screening of liver cancer. Serum samples were collected from 60 patients with liver cancer (27 patients with stage T1 and T2 liver cancer, 33 patients with stage T3 and T4 liver cancer) and 40 healthy volunteers. Herein, immunoglobulin and albumin were separated by immune sorption and Cohn ethanol fractionation. Then, the low abundance protein (LAPs) was enriched, and high-quality SERS spectral signals were detected and obtained. Finally, combined with the principal component analysis-linear discriminant analysis (PCA-LDA) algorithm, the SERS spectrum of early liver cancer (T1-T2) and advanced liver cancer (T3-T4) could be well distinguished from normal people, and the accuracy rate was 98.5% and 100%, respectively. Moreover, SERS technology based on serum LAPs extraction combined with the partial least square-support vector machine (PLS-SVM) successfully realized the classification and prediction of normal volunteers and liver cancer patients with different tumor (T) stages, and the diagnostic accuracy of PLS-SVM reached 87.5% in the unknown testing set. The experimental results show that the serum LAPs SERS detection combined with multivariate statistical algorithms can be used for effectively distinguishing liver cancer patients from healthy volunteers, and even achieved the screening of early liver cancer with high accuracy (T1 and T2 stage). These results showed that serum LAPs SERS detection combined with a multivariate statistical diagnostic algorithm has certain application potential in early cancer screening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luna_aaa应助yang135采纳,获得10
1秒前
忧郁小刺猬完成签到,获得积分10
1秒前
4秒前
LIBINWANG完成签到,获得积分10
5秒前
6秒前
老虎完成签到,获得积分10
7秒前
苹果夜梦完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
NexusExplorer应助不安冰棍采纳,获得10
10秒前
竹本完成签到 ,获得积分10
11秒前
Dio完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
田様应助MGzsss采纳,获得10
14秒前
14秒前
思源应助你好采纳,获得10
14秒前
14秒前
15秒前
Daiys完成签到,获得积分10
16秒前
蓝天应助彩虹捕手采纳,获得10
17秒前
xiaofeidiao完成签到,获得积分10
17秒前
尔蝶完成签到 ,获得积分10
18秒前
ZZL发布了新的文献求助10
18秒前
搬砖发布了新的文献求助10
19秒前
20秒前
嗯哼完成签到 ,获得积分10
21秒前
Akim应助涯123采纳,获得10
22秒前
22秒前
高贵秋柳发布了新的文献求助10
23秒前
24秒前
英勇的若灵完成签到 ,获得积分10
24秒前
24秒前
专注雁卉发布了新的文献求助10
25秒前
MGzsss发布了新的文献求助10
25秒前
27秒前
薏_发布了新的文献求助10
27秒前
yznfly应助Tail采纳,获得20
27秒前
你好发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617