Low-abundance proteins-based label-free SERS approach for high precision detection of liver cancer with different stages

化学 肝癌 丰度(生态学) 癌症 计算生物学 纳米技术 色谱法 生态学 内科学 医学 生物 材料科学
作者
Tong Sun,Yamin Lin,Yun Yu,Siqi Gao,Xingen Gao,Hongyi Zhang,Kecan Lin,Juqiang Lin
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1304: 342518-342518 被引量:5
标识
DOI:10.1016/j.aca.2024.342518
摘要

Surface-enhanced Raman scattering (SERS) technology have unique advantages of rapid, simple, and highly sensitive in the detection of serum, it can be used for the detection of liver cancer. However, some protein biomarkers in body fluids are often present at ultra-low concentrations and severely interfered with by the high-abundance proteins (HAPs), which will affect the detection of specificity and accuracy in cancer screening based on the SERS immunoassay. Clearly, there is a need for an unlabeled SERS method based on low abundance proteins, which is rapid, noninvasive, and capable of high precision detection and screening of liver cancer. Serum samples were collected from 60 patients with liver cancer (27 patients with stage T1 and T2 liver cancer, 33 patients with stage T3 and T4 liver cancer) and 40 healthy volunteers. Herein, immunoglobulin and albumin were separated by immune sorption and Cohn ethanol fractionation. Then, the low abundance protein (LAPs) was enriched, and high-quality SERS spectral signals were detected and obtained. Finally, combined with the principal component analysis-linear discriminant analysis (PCA-LDA) algorithm, the SERS spectrum of early liver cancer (T1-T2) and advanced liver cancer (T3-T4) could be well distinguished from normal people, and the accuracy rate was 98.5% and 100%, respectively. Moreover, SERS technology based on serum LAPs extraction combined with the partial least square-support vector machine (PLS-SVM) successfully realized the classification and prediction of normal volunteers and liver cancer patients with different tumor (T) stages, and the diagnostic accuracy of PLS-SVM reached 87.5% in the unknown testing set. The experimental results show that the serum LAPs SERS detection combined with multivariate statistical algorithms can be used for effectively distinguishing liver cancer patients from healthy volunteers, and even achieved the screening of early liver cancer with high accuracy (T1 and T2 stage). These results showed that serum LAPs SERS detection combined with a multivariate statistical diagnostic algorithm has certain application potential in early cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
curtisness应助宇文青寒采纳,获得10
刚刚
顾矜应助Silole采纳,获得10
刚刚
刚刚
1秒前
沛沛发布了新的文献求助10
1秒前
CornellRong发布了新的文献求助10
2秒前
毛毛虫完成签到,获得积分10
3秒前
满意语风发布了新的文献求助10
3秒前
3秒前
1111发布了新的文献求助10
7秒前
斯文败类应助zeran采纳,获得10
7秒前
8秒前
9秒前
温柔柜子发布了新的文献求助10
9秒前
CornellRong完成签到,获得积分10
9秒前
10秒前
ppttyy完成签到 ,获得积分10
11秒前
CodeCraft应助甜屁儿采纳,获得10
12秒前
兜兜发布了新的文献求助10
13秒前
nlyk发布了新的文献求助10
13秒前
yeu103325完成签到,获得积分10
14秒前
NexusExplorer应助寒冷的断秋采纳,获得10
15秒前
李爱国应助nlyk采纳,获得10
18秒前
科研菜菜鸡完成签到,获得积分10
21秒前
浮游应助LEEGAN采纳,获得10
21秒前
Wwnjie应助LEEGAN采纳,获得10
21秒前
周周完成签到,获得积分20
21秒前
胡萝卜完成签到,获得积分10
22秒前
辜越涛发布了新的文献求助10
22秒前
23秒前
Lucas应助宇文青寒采纳,获得10
24秒前
予北完成签到 ,获得积分10
24秒前
26秒前
momo完成签到,获得积分20
26秒前
26秒前
淡然冬灵发布了新的文献求助10
26秒前
XCYIN完成签到,获得积分10
27秒前
周周发布了新的文献求助10
27秒前
桐桐应助dddnnn采纳,获得10
28秒前
脑洞疼应助林白采纳,获得10
29秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383195
求助须知:如何正确求助?哪些是违规求助? 4506162
关于积分的说明 14023625
捐赠科研通 4415813
什么是DOI,文献DOI怎么找? 2425772
邀请新用户注册赠送积分活动 1418457
关于科研通互助平台的介绍 1396672