Low-abundance proteins-based label-free SERS approach for high precision detection of liver cancer with different stages

化学 肝癌 丰度(生态学) 癌症 计算生物学 纳米技术 色谱法 生态学 内科学 医学 生物 材料科学
作者
Tong Sun,Yamin Lin,Yun Yu,Siqi Gao,Xingen Gao,Hongyi Zhang,Kecan Lin,Juqiang Lin
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1304: 342518-342518 被引量:5
标识
DOI:10.1016/j.aca.2024.342518
摘要

Surface-enhanced Raman scattering (SERS) technology have unique advantages of rapid, simple, and highly sensitive in the detection of serum, it can be used for the detection of liver cancer. However, some protein biomarkers in body fluids are often present at ultra-low concentrations and severely interfered with by the high-abundance proteins (HAPs), which will affect the detection of specificity and accuracy in cancer screening based on the SERS immunoassay. Clearly, there is a need for an unlabeled SERS method based on low abundance proteins, which is rapid, noninvasive, and capable of high precision detection and screening of liver cancer. Serum samples were collected from 60 patients with liver cancer (27 patients with stage T1 and T2 liver cancer, 33 patients with stage T3 and T4 liver cancer) and 40 healthy volunteers. Herein, immunoglobulin and albumin were separated by immune sorption and Cohn ethanol fractionation. Then, the low abundance protein (LAPs) was enriched, and high-quality SERS spectral signals were detected and obtained. Finally, combined with the principal component analysis-linear discriminant analysis (PCA-LDA) algorithm, the SERS spectrum of early liver cancer (T1-T2) and advanced liver cancer (T3-T4) could be well distinguished from normal people, and the accuracy rate was 98.5% and 100%, respectively. Moreover, SERS technology based on serum LAPs extraction combined with the partial least square-support vector machine (PLS-SVM) successfully realized the classification and prediction of normal volunteers and liver cancer patients with different tumor (T) stages, and the diagnostic accuracy of PLS-SVM reached 87.5% in the unknown testing set. The experimental results show that the serum LAPs SERS detection combined with multivariate statistical algorithms can be used for effectively distinguishing liver cancer patients from healthy volunteers, and even achieved the screening of early liver cancer with high accuracy (T1 and T2 stage). These results showed that serum LAPs SERS detection combined with a multivariate statistical diagnostic algorithm has certain application potential in early cancer screening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助静仰星空采纳,获得10
刚刚
啦啦啦发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
传奇3应助niko采纳,获得10
2秒前
在水一方应助从容保温杯采纳,获得10
2秒前
2秒前
2秒前
3秒前
4秒前
4秒前
热心的翩跹完成签到,获得积分10
4秒前
4秒前
hbydyy发布了新的文献求助10
4秒前
小鹿发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
Orange应助李up采纳,获得10
5秒前
打打应助11采纳,获得10
5秒前
ahriwang发布了新的文献求助10
5秒前
deng完成签到,获得积分20
5秒前
abc发布了新的文献求助10
6秒前
丘比特应助灬卍冉采纳,获得10
6秒前
抽纸盒发布了新的文献求助10
6秒前
猪猪hero发布了新的文献求助10
6秒前
HJJHJH发布了新的文献求助10
6秒前
7秒前
8秒前
桃掉烦恼完成签到,获得积分10
8秒前
feifei发布了新的文献求助10
8秒前
思源应助小猪存钱罐采纳,获得10
8秒前
无情的薯片完成签到,获得积分10
9秒前
9秒前
9秒前
lyh发布了新的文献求助10
9秒前
zhaokkkk完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123