Low-abundance proteins-based label-free SERS approach for high precision detection of liver cancer with different stages

化学 肝癌 丰度(生态学) 癌症 计算生物学 纳米技术 色谱法 生态学 内科学 医学 材料科学 生物
作者
Tong Sun,Yamin Lin,Yun Yu,Siqi Gao,Xingen Gao,Hongyi Zhang,Kecan Lin,Juqiang Lin
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1304: 342518-342518 被引量:2
标识
DOI:10.1016/j.aca.2024.342518
摘要

Surface-enhanced Raman scattering (SERS) technology have unique advantages of rapid, simple, and highly sensitive in the detection of serum, it can be used for the detection of liver cancer. However, some protein biomarkers in body fluids are often present at ultra-low concentrations and severely interfered with by the high-abundance proteins (HAPs), which will affect the detection of specificity and accuracy in cancer screening based on the SERS immunoassay. Clearly, there is a need for an unlabeled SERS method based on low abundance proteins, which is rapid, noninvasive, and capable of high precision detection and screening of liver cancer. Serum samples were collected from 60 patients with liver cancer (27 patients with stage T1 and T2 liver cancer, 33 patients with stage T3 and T4 liver cancer) and 40 healthy volunteers. Herein, immunoglobulin and albumin were separated by immune sorption and Cohn ethanol fractionation. Then, the low abundance protein (LAPs) was enriched, and high-quality SERS spectral signals were detected and obtained. Finally, combined with the principal component analysis-linear discriminant analysis (PCA-LDA) algorithm, the SERS spectrum of early liver cancer (T1-T2) and advanced liver cancer (T3-T4) could be well distinguished from normal people, and the accuracy rate was 98.5% and 100%, respectively. Moreover, SERS technology based on serum LAPs extraction combined with the partial least square-support vector machine (PLS-SVM) successfully realized the classification and prediction of normal volunteers and liver cancer patients with different tumor (T) stages, and the diagnostic accuracy of PLS-SVM reached 87.5% in the unknown testing set. The experimental results show that the serum LAPs SERS detection combined with multivariate statistical algorithms can be used for effectively distinguishing liver cancer patients from healthy volunteers, and even achieved the screening of early liver cancer with high accuracy (T1 and T2 stage). These results showed that serum LAPs SERS detection combined with a multivariate statistical diagnostic algorithm has certain application potential in early cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rrr发布了新的文献求助10
1秒前
2秒前
2秒前
serenity完成签到 ,获得积分10
2秒前
Benliu完成签到,获得积分10
2秒前
csq发布了新的文献求助10
3秒前
4秒前
Hello应助外向的醉易采纳,获得10
4秒前
DWWWDAADAD完成签到,获得积分10
7秒前
科研通AI5应助一天八杯水采纳,获得10
8秒前
杨大仙儿完成签到 ,获得积分10
8秒前
10秒前
坚强的广山应助木头人采纳,获得200
10秒前
嘻哈学习完成签到,获得积分10
10秒前
10秒前
10秒前
ying完成签到,获得积分10
11秒前
11秒前
虚幻白玉完成签到,获得积分10
12秒前
安静的孤萍完成签到,获得积分10
13秒前
13秒前
lyz666发布了新的文献求助10
13秒前
liuxl发布了新的文献求助10
14秒前
smile完成签到,获得积分20
15秒前
Shuo Yang完成签到,获得积分10
15秒前
15秒前
伊酒发布了新的文献求助10
15秒前
蓉儿完成签到 ,获得积分10
16秒前
动人的梦之完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
小小爱吃百香果完成签到,获得积分20
19秒前
薪炭林应助空心采纳,获得30
19秒前
宫宛儿完成签到,获得积分10
19秒前
smile发布了新的文献求助10
20秒前
永远少年发布了新的文献求助10
21秒前
跳跃完成签到,获得积分20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808