A model-based MR parameter mapping network robust to substantial variations in acquisition settings

计算机科学 人工智能 深度学习 数据采集 正规化(语言学) 构造(python库) 非线性系统 机器学习 模式识别(心理学) 数据挖掘 量子力学 操作系统 物理 程序设计语言
作者
Qiqi Lu,Jialong Li,Zifeng Lian,Xinyuan Zhang,Qianjin Feng,Wufan Chen,Jianhua Ma,Yanqiu Feng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:94: 103148-103148 被引量:3
标识
DOI:10.1016/j.media.2024.103148
摘要

Deep learning methods show great potential for the efficient and precise estimation of quantitative parameter maps from multiple magnetic resonance (MR) images. Current deep learning-based MR parameter mapping (MPM) methods are mostly trained and tested using data with specific acquisition settings. However, scan protocols usually vary with centers, scanners, and studies in practice. Thus, deep learning methods applicable to MPM with varying acquisition settings are highly required but still rarely investigated. In this work, we develop a model-based deep network termed MMPM-Net for robust MPM with varying acquisition settings. A deep learning-based denoiser is introduced to construct the regularization term in the nonlinear inversion problem of MPM. The alternating direction method of multipliers is used to solve the optimization problem and then unrolled to construct MMPM-Net. The variation in acquisition parameters can be addressed by the data fidelity component in MMPM-Net. Extensive experiments are performed on R2 mapping and R1 mapping datasets with substantial variations in acquisition settings, and the results demonstrate that the proposed MMPM-Net method outperforms other state-of-the-art MR parameter mapping methods both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Nano应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
小明应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得20
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
小明应助科研通管家采纳,获得10
1秒前
英吉利25发布了新的文献求助30
1秒前
1秒前
流年发布了新的文献求助10
1秒前
2秒前
2秒前
不想学习的颓废少女完成签到,获得积分10
2秒前
浮游应助HHHH采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
13664424767完成签到,获得积分10
2秒前
3秒前
伙腿长完成签到,获得积分20
3秒前
贾小抽完成签到,获得积分10
4秒前
迷你的祥完成签到,获得积分20
4秒前
4秒前
张怡博完成签到 ,获得积分10
4秒前
kk发布了新的文献求助10
4秒前
Ava应助细心擎呢采纳,获得10
5秒前
5秒前
5秒前
Alex爱大家发布了新的文献求助10
5秒前
6秒前
tuanheqi应助花生小铺主人采纳,获得100
6秒前
6秒前
Bailan完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246