亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Current safeguards, risk mitigation, and transparency measures of large language models against the generation of health disinformation: repeated cross sectional analysis

造谣 透明度(行为) 公共卫生 业务 环境卫生 医学 互联网隐私 计算机安全 政治学 计算机科学 社会化媒体 法学 护理部
作者
Bradley D. Menz,Nicole M. Kuderer,Stephen Bacchi,Natansh D. Modi,Benjamin Chin‐Yee,Tiancheng Hu,Ceara Rickard,Mark Haseloff,Agnès Vitry,Ross A. McKinnon,Ganessan Kichenadasse,Andrew Rowland,Michael J. Sorich,Ashley M. Hopkins
标识
DOI:10.1136/bmj-2023-078538
摘要

Abstract Objectives To evaluate the effectiveness of safeguards to prevent large language models (LLMs) from being misused to generate health disinformation, and to evaluate the transparency of artificial intelligence (AI) developers regarding their risk mitigation processes against observed vulnerabilities. Design Repeated cross sectional analysis. Setting Publicly accessible LLMs. Methods In a repeated cross sectional analysis, four LLMs (via chatbots/assistant interfaces) were evaluated: OpenAI’s GPT-4 (via ChatGPT and Microsoft’s Copilot), Google’s PaLM 2 and newly released Gemini Pro (via Bard), Anthropic’s Claude 2 (via Poe), and Meta’s Llama 2 (via HuggingChat). In September 2023, these LLMs were prompted to generate health disinformation on two topics: sunscreen as a cause of skin cancer and the alkaline diet as a cancer cure. Jailbreaking techniques (ie, attempts to bypass safeguards) were evaluated if required. For LLMs with observed safeguarding vulnerabilities, the processes for reporting outputs of concern were audited. 12 weeks after initial investigations, the disinformation generation capabilities of the LLMs were re-evaluated to assess any subsequent improvements in safeguards. Main outcome measures The main outcome measures were whether safeguards prevented the generation of health disinformation, and the transparency of risk mitigation processes against health disinformation. Results Claude 2 (via Poe) declined 130 prompts submitted across the two study timepoints requesting the generation of content claiming that sunscreen causes skin cancer or that the alkaline diet is a cure for cancer, even with jailbreaking attempts. GPT-4 (via Copilot) initially refused to generate health disinformation, even with jailbreaking attempts—although this was not the case at 12 weeks. In contrast, GPT-4 (via ChatGPT), PaLM 2/Gemini Pro (via Bard), and Llama 2 (via HuggingChat) consistently generated health disinformation blogs. In September 2023 evaluations, these LLMs facilitated the generation of 113 unique cancer disinformation blogs, totalling more than 40 000 words, without requiring jailbreaking attempts. The refusal rate across the evaluation timepoints for these LLMs was only 5% (7 of 150), and as prompted the LLM generated blogs incorporated attention grabbing titles, authentic looking (fake or fictional) references, fabricated testimonials from patients and clinicians, and they targeted diverse demographic groups. Although each LLM evaluated had mechanisms to report observed outputs of concern, the developers did not respond when observations of vulnerabilities were reported. Conclusions This study found that although effective safeguards are feasible to prevent LLMs from being misused to generate health disinformation, they were inconsistently implemented. Furthermore, effective processes for reporting safeguard problems were lacking. Enhanced regulation, transparency, and routine auditing are required to help prevent LLMs from contributing to the mass generation of health disinformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随性完成签到 ,获得积分10
1秒前
3秒前
yu应助窦慕卉采纳,获得30
5秒前
6秒前
忧郁的香魔完成签到,获得积分10
6秒前
初七123发布了新的文献求助10
6秒前
Emma完成签到,获得积分10
7秒前
Joeswith完成签到,获得积分10
8秒前
rainbow完成签到 ,获得积分0
8秒前
北风完成签到,获得积分10
11秒前
SciKid524完成签到 ,获得积分10
12秒前
orixero应助科研通管家采纳,获得10
13秒前
杳鸢应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
杳鸢应助科研通管家采纳,获得10
13秒前
杳鸢应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
杳鸢应助科研通管家采纳,获得10
13秒前
1437594843完成签到 ,获得积分10
15秒前
wanci应助初七123采纳,获得10
20秒前
kkk完成签到,获得积分20
20秒前
敏er完成签到 ,获得积分10
21秒前
我是老大应助_ban采纳,获得10
28秒前
小二郎应助小葵ty采纳,获得10
30秒前
西柚完成签到 ,获得积分10
33秒前
kkk关注了科研通微信公众号
35秒前
科研通AI5应助林玖壹采纳,获得10
35秒前
绝味大姨完成签到,获得积分10
35秒前
失眠的霸完成签到,获得积分10
40秒前
asaki完成签到,获得积分10
44秒前
普普完成签到,获得积分10
45秒前
丘比特应助小瓷采纳,获得30
46秒前
bkagyin应助loyalll采纳,获得10
49秒前
不明生物完成签到,获得积分10
52秒前
Dio完成签到,获得积分20
57秒前
1分钟前
周冬利完成签到,获得积分10
1分钟前
loyalll发布了新的文献求助10
1分钟前
我爱学习完成签到 ,获得积分10
1分钟前
天天快乐应助周冬利采纳,获得10
1分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491299
求助须知:如何正确求助?哪些是违规求助? 3077894
关于积分的说明 9151068
捐赠科研通 2770431
什么是DOI,文献DOI怎么找? 1520437
邀请新用户注册赠送积分活动 704572
科研通“疑难数据库(出版商)”最低求助积分说明 702262