已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FELight: Fairness-Aware Traffic Signal Control via Sample-Efficient Reinforcement Learning

计算机科学 强化学习 调度(生产过程) 样品(材料) 人工智能 机器学习 数学优化 数学 色谱法 化学
作者
Xinqi Du,Ziyue Li,Cheng Long,Yongheng Xing,Philip S. Yu,Hechang Chen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (9): 4678-4692 被引量:2
标识
DOI:10.1109/tkde.2024.3376745
摘要

Traffic congestion is becoming an increasingly prominent problem, and intelligent traffic signal control methods can effectively alleviate it. Recently, there has been a growing trend of applying reinforcement learning to traffic signal control for adaptive signal scheduling. However, most existing methods focus on improving traffic performance while neglecting the issue of scheduling fairness, resulting in long waiting time for some vehicles. Some works attempt to address fairness issues but often sacrifice transport performance. Furthermore, existing methods overlook the challenge of sample efficiency, especially when dealing with diversity-limited traffic data. Therefore, we propose a F airness-aware and sample- E fficient traffic signal control method called FELight. Specifically, we first design a novel fairness metric and integrate it into decision process to penalize cases with high latency by setting a threshold for activating the fairness mechanism. Theoretical comparison with other fairness works proves why and when our fairness could bring advantages. Moreover, counterfactual data augmentation is employed to enrich interaction data, enhancing the sample efficiency of FELight. Self-supervised state representation is introduced to extract informative features from raw states, further improving sample efficiency. Experiments on real traffic datasets demonstrate that FELight provides relatively fairer traffic signal control without compromising performance compared to state-of-the-art approaches. Our codes are available at https://github.com/dxnbbsw/FELight .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溦昼发布了新的文献求助10
1秒前
九思发布了新的文献求助10
3秒前
5秒前
与鹤归完成签到,获得积分10
7秒前
张学虫完成签到 ,获得积分10
8秒前
8秒前
金平卢仙发布了新的文献求助10
10秒前
Orange应助逆风飞扬采纳,获得10
13秒前
zzzooouu发布了新的文献求助10
13秒前
溦昼完成签到,获得积分10
14秒前
竹林听雨zxs完成签到 ,获得积分10
15秒前
千云皆墨完成签到,获得积分10
17秒前
科研通AI5应助自然代萱采纳,获得10
20秒前
张111发布了新的文献求助30
21秒前
酷炫的翠阳应助雨纷纷采纳,获得10
21秒前
英俊的铭应助张权采纳,获得10
22秒前
冷傲机器猫完成签到,获得积分10
23秒前
科研水神大队长完成签到,获得积分10
23秒前
26秒前
大大怪完成签到,获得积分10
32秒前
Qifan完成签到 ,获得积分10
32秒前
兴奋鼠标完成签到 ,获得积分10
36秒前
汉堡包应助清新的静枫采纳,获得10
37秒前
上官若男应助圆箱子采纳,获得10
38秒前
40秒前
小宋发布了新的文献求助10
41秒前
受伤代容发布了新的文献求助10
42秒前
脑洞疼应助yxb采纳,获得10
42秒前
NZH发布了新的文献求助10
43秒前
依然发布了新的文献求助10
45秒前
文献小白完成签到,获得积分10
45秒前
45秒前
科研通AI5应助风中的非笑采纳,获得30
46秒前
SciGPT应助老地方采纳,获得10
47秒前
打打应助科研通管家采纳,获得10
47秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
大个应助科研通管家采纳,获得10
47秒前
充电宝应助科研通管家采纳,获得10
47秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
思源应助科研通管家采纳,获得10
48秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712637
求助须知:如何正确求助?哪些是违规求助? 3260776
关于积分的说明 9915045
捐赠科研通 2974351
什么是DOI,文献DOI怎么找? 1630867
邀请新用户注册赠送积分活动 773738
科研通“疑难数据库(出版商)”最低求助积分说明 744404