SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation

蒸散量 环境科学 辐射 计算机科学 物理 生态学 生物 量子力学
作者
Arman Ahmadi,Mohammad Hossein Kazemi,André Daccache,Richard L. Snyder
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:295: 108779-108779 被引量:2
标识
DOI:10.1016/j.agwat.2024.108779
摘要

Irrigation is the most significant consumer of freshwater worldwide. Deciding on the right amount of irrigation is crucial for sustainable water management and food production. The Penman-Monteith (P-M) reference crop evapotranspiration (ETO) is the gold standard in irrigation management and scheduling; however, its calculation requires measurements from multiple sensors over an extended reference grass surface. The cost of land, sensors, maintenance, and water to keep the grass surface green impedes having a dense network of ETO stations. To solve this challenge, this research aims to develop an input-limited ETO estimation approach based on historical weather data and machine learning (ML) algorithms to relax the need for a reference grass surface. This approach, called "SolarET," takes solar radiation (RS) data as its sole input. RS is the only meteorological driving factor of ETO that does not rely on the measuring surface. To test the generalizability of SolarET, we test its performance over unseen arbitrary locations across California. California is chosen as the case study since it is one of the world's most hydrologically altered and agriculturally productive regions. In total, 19,088,736 hourly data samples from 131 automated weather stations have been used in this study. The ML models have been trained over 114 stations and tested over 17 unseen stations, each representing a California climatic zone. Our findings point to the superiority of decision tree-based algorithms versus neural networks. SolarET works best in irrigation-oriented regions of California (e.g., Central Valley) and is less accurate in coastal and desert zones. Our results demonstrate the higher accuracy of SolarET using hourly (RMSE = 0.93 mm/day) and daily (RMSE = 0.97 mm/day) RS data in comparison to well-known empirical alternatives like Priestley-Taylor (PT) (RMSE = 1.35 mm/day) and Hargreaves-Samani (HS) (RMSE = 2.69 mm/day).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
能干雁凡发布了新的文献求助10
2秒前
周杨烊发布了新的文献求助10
2秒前
复杂若男发布了新的文献求助10
3秒前
xxx发布了新的文献求助10
3秒前
孔师发布了新的文献求助10
3秒前
3秒前
4秒前
子车茗应助bq28采纳,获得20
4秒前
大海发布了新的文献求助10
5秒前
哈哈发布了新的文献求助10
6秒前
科研通AI5应助云飞扬采纳,获得10
6秒前
魔幻的千山完成签到,获得积分20
6秒前
7秒前
QuJiahao完成签到,获得积分10
8秒前
8秒前
乐乐应助Ruan采纳,获得10
8秒前
9秒前
深情安青应助魔幻的千山采纳,获得10
10秒前
10秒前
闪闪的又亦完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
孔师完成签到,获得积分10
11秒前
科研通AI5应助踏雪飞鸿采纳,获得10
12秒前
小蘑菇应助puhui采纳,获得30
12秒前
usora发布了新的文献求助10
12秒前
12秒前
13秒前
丘比特应助风再起时采纳,获得10
13秒前
明理十三发布了新的文献求助10
13秒前
科研通AI5应助明理的蓝采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
深情安青应助永力采纳,获得10
15秒前
15秒前
传奇3应助不会飞的大圣采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748428
求助须知:如何正确求助?哪些是违规求助? 3291391
关于积分的说明 10072942
捐赠科研通 3007152
什么是DOI,文献DOI怎么找? 1651507
邀请新用户注册赠送积分活动 786406
科研通“疑难数据库(出版商)”最低求助积分说明 751719