Capacitive BaTiO3-PDMS hand-gesture sensor: Insights into sensing mechanisms and signal classification with machine learning

电容感应 材料科学 计算机科学 耐久性 电容 可穿戴计算机 小型化 弯曲 灵敏度(控制系统) 信号(编程语言) 机器人学 声学 人工智能 纳米技术 嵌入式系统 机器人 电子工程 复合材料 程序设计语言 物理 操作系统 化学 电极 物理化学 工程类
作者
Frances Danielle M. Fernandez,Munseong Kim,Sukeun Yoon,Jihoon Kim
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:251: 110581-110581
标识
DOI:10.1016/j.compscitech.2024.110581
摘要

Flexible sensors have gained extensive interest because of their versatile applications in healthcare, robotics, and wearable devices. This study introduces a capacitive sensor utilizing barium titanate oxide (BaTiO3)-polydimethylsiloxane (PDMS) for bending sensing and addresses crucial performance parameters including sensitivity, repeatability, response time, and durability. The sensor exhibited a notable capacitance change of 42.85% in conjunction with fast (1 s) responses and recovery times, and minimal hysteresis (<2%). Its reliable performance across varying bending rates and durability through extensive cyclic tests underscore its applicability in real-world scenarios. Importantly, the sensor's capabilities were enhanced by integrating machine learning (ML), achieving an impressive accuracy of 97.11% in recognizing hand-sign language gestures. Furthermore, finite element analysis was employed to validate the correlation between the increase in compression-induced packing density and capacitance enhancement. This holistic integration of advanced materials, computational simulations, and ML not only extends the boundaries of sensor technology but also holds promise for revolutionizing human–machine interactions, aiding speech-impaired individuals, and enriching virtual reality experiences. This study represents a pivotal advancement in the field of flexible sensors and the unlocking of new dimensions of their applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张纠纠发布了新的文献求助10
2秒前
打打应助cui采纳,获得10
2秒前
脑洞疼应助愉快的千柳采纳,获得10
3秒前
天选之子完成签到,获得积分10
3秒前
4秒前
4秒前
小马甲应助看小龙虾打架采纳,获得10
6秒前
顺利的耶发布了新的文献求助10
6秒前
搜集达人应助经管研究生采纳,获得30
7秒前
科研通AI2S应助swing采纳,获得10
7秒前
哈哈哩哩啦完成签到 ,获得积分10
8秒前
向日葵发布了新的文献求助10
8秒前
Vesper完成签到 ,获得积分10
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
11秒前
Yziii应助科研通管家采纳,获得20
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
安澜应助科研通管家采纳,获得20
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
Mzhao应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得30
13秒前
所所应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138196
求助须知:如何正确求助?哪些是违规求助? 2789101
关于积分的说明 7790287
捐赠科研通 2445509
什么是DOI,文献DOI怎么找? 1300476
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046