已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling implicit variable and latent structure for aspect-based sentiment quadruple extraction

潜变量 变量(数学) 计算机科学 潜变量模型 萃取(化学) 自然语言处理 人工智能 数学 化学 色谱法 数学分析
作者
Yu Nie,Jianming Fu,Yilai Zhang,Chao Li
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:586: 127642-127642 被引量:2
标识
DOI:10.1016/j.neucom.2024.127642
摘要

The realm of aspect-based sentiment analysis (ABSA), which delves into the nuanced sentiment expressions individuals hold towards specific services or products, has demonstrated immense potential in real-world applications. Recently, ABSA has evolved into the development of aspect-based sentiment quadruple extraction (ASQP). ASQP's objective is to predict four crucial sentiment elements: aspect, sentiment, opinion and category, where such comprehensive approach paints a holistic description of sentiment, facilitating downstream applications. However, prevailing ASQP models suffer from various limitations, such as inefficiency in decoding, inadequate handling of implicit aspects and opinions, and underutilization of structural information. In this paper, we explore an innovative approach to enhance ASQP. Firstly, we adopt a pointer-based non-autoregressive generative framework, enabling the parallel generation of all sentiment quadruples. This approach preserves the advantages of generative methods while significantly boosting decoding efficiency. Additionally, we introduce latent variable learning to model the aspect and opinion elements, effectively enhancing our ability to reason about implicit ASQP components. Furthermore, we propose an aspect-and-opinion-guided latent structure to bolster sentiment-aware context learning. This dynamically induced graph structure adapts to the specific requirements of the task, offering optimal support for ASQP. Our method outperforms current state-of-the-art models on four benchmark ASQP datasets, demonstrating its significant superiority. A detailed analysis highlights the benefits of non-autoregressive decoding in achieving high inference efficiency, the effectiveness of the variational module in capturing implicit sentiment elements, and the value of the dynamically induced latent structure in accurate sentiment feature learning. Moreover, our system excels in producing interpretable predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS发布了新的文献求助10
1秒前
社会主义接班人完成签到 ,获得积分10
4秒前
4秒前
毛毛完成签到 ,获得积分10
8秒前
在水一方应助曦熙采纳,获得10
8秒前
9秒前
10秒前
笨笨念文完成签到 ,获得积分10
14秒前
莉莉完成签到,获得积分20
16秒前
19秒前
幸福大白发布了新的文献求助10
24秒前
无奈的盼望完成签到 ,获得积分10
26秒前
大模型应助咚咚咚采纳,获得10
27秒前
曦熙完成签到,获得积分10
27秒前
记得吃蔬菜完成签到,获得积分10
30秒前
31秒前
ding应助hy采纳,获得10
34秒前
35秒前
35秒前
清璃完成签到 ,获得积分10
37秒前
咚咚咚发布了新的文献求助10
41秒前
CodeCraft应助医者仓鼠采纳,获得10
42秒前
buno应助wly1111采纳,获得10
46秒前
48秒前
SiO2完成签到 ,获得积分0
49秒前
57秒前
科研通AI5应助chenjun7080采纳,获得10
1分钟前
医者仓鼠发布了新的文献求助10
1分钟前
123发布了新的文献求助10
1分钟前
Owen应助jichenzhang2024采纳,获得30
1分钟前
1分钟前
MXene应助木又采纳,获得20
1分钟前
1分钟前
SciGPT应助高挑的如柏采纳,获得10
1分钟前
chenjun7080发布了新的文献求助10
1分钟前
SDUMoist发布了新的文献求助20
1分钟前
1分钟前
Thien发布了新的文献求助10
1分钟前
科研通AI2S应助络绎采纳,获得10
1分钟前
李健应助爱航哥多久了采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625231
求助须知:如何正确求助?哪些是违规求助? 4024425
关于积分的说明 12457124
捐赠科研通 3709196
什么是DOI,文献DOI怎么找? 2045920
邀请新用户注册赠送积分活动 1077828
科研通“疑难数据库(出版商)”最低求助积分说明 960374