Modeling implicit variable and latent structure for aspect-based sentiment quadruple extraction

潜变量 变量(数学) 计算机科学 潜变量模型 萃取(化学) 自然语言处理 人工智能 数学 化学 色谱法 数学分析
作者
Yu Nie,Jianming Fu,Yilai Zhang,Chao Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:586: 127642-127642
标识
DOI:10.1016/j.neucom.2024.127642
摘要

The realm of aspect-based sentiment analysis (ABSA), which delves into the nuanced sentiment expressions individuals hold towards specific services or products, has demonstrated immense potential in real-world applications. Recently, ABSA has evolved into the development of aspect-based sentiment quadruple extraction (ASQP). ASQP's objective is to predict four crucial sentiment elements: aspect, sentiment, opinion and category, where such comprehensive approach paints a holistic description of sentiment, facilitating downstream applications. However, prevailing ASQP models suffer from various limitations, such as inefficiency in decoding, inadequate handling of implicit aspects and opinions, and underutilization of structural information. In this paper, we explore an innovative approach to enhance ASQP. Firstly, we adopt a pointer-based non-autoregressive generative framework, enabling the parallel generation of all sentiment quadruples. This approach preserves the advantages of generative methods while significantly boosting decoding efficiency. Additionally, we introduce latent variable learning to model the aspect and opinion elements, effectively enhancing our ability to reason about implicit ASQP components. Furthermore, we propose an aspect-and-opinion-guided latent structure to bolster sentiment-aware context learning. This dynamically induced graph structure adapts to the specific requirements of the task, offering optimal support for ASQP. Our method outperforms current state-of-the-art models on four benchmark ASQP datasets, demonstrating its significant superiority. A detailed analysis highlights the benefits of non-autoregressive decoding in achieving high inference efficiency, the effectiveness of the variational module in capturing implicit sentiment elements, and the value of the dynamically induced latent structure in accurate sentiment feature learning. Moreover, our system excels in producing interpretable predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
优美的可乐完成签到,获得积分10
3秒前
彭于晏应助小鹿斑比采纳,获得10
3秒前
nannan发布了新的文献求助10
3秒前
4秒前
11111完成签到,获得积分10
5秒前
5秒前
佩弦发布了新的文献求助10
6秒前
消除科学障碍完成签到,获得积分10
7秒前
可爱的函函应助NJSGSKL采纳,获得10
8秒前
sometimesawake完成签到,获得积分10
9秒前
打工人不酷完成签到 ,获得积分10
9秒前
10秒前
科通研AI发布了新的文献求助10
11秒前
12秒前
Sherlock完成签到,获得积分10
12秒前
yangp完成签到,获得积分10
13秒前
nannan完成签到,获得积分10
13秒前
幽默白柏发布了新的文献求助30
15秒前
208225完成签到,获得积分10
15秒前
bbbbb发布了新的文献求助10
16秒前
NexusExplorer应助小陈爱科研采纳,获得10
17秒前
科通研AI完成签到,获得积分10
17秒前
lumos发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
19秒前
HEIKU应助依依采纳,获得10
19秒前
赘婿应助957144269采纳,获得10
21秒前
22秒前
22秒前
22秒前
bbbbb完成签到,获得积分10
23秒前
怕黑月光发布了新的文献求助10
24秒前
小庄发布了新的文献求助10
24秒前
话落谁家发布了新的文献求助10
25秒前
25秒前
guozizi发布了新的文献求助10
26秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
Development and Industrialization of Stereoregular Polynorbornenes 500
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3418967
求助须知:如何正确求助?哪些是违规求助? 3020331
关于积分的说明 8891883
捐赠科研通 2707701
什么是DOI,文献DOI怎么找? 1484979
科研通“疑难数据库(出版商)”最低求助积分说明 686261
邀请新用户注册赠送积分活动 681426