Modeling implicit variable and latent structure for aspect-based sentiment quadruple extraction

潜变量 变量(数学) 计算机科学 潜变量模型 萃取(化学) 自然语言处理 人工智能 数学 化学 色谱法 数学分析
作者
Yu Nie,Jianming Fu,Yilai Zhang,Chao Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:586: 127642-127642 被引量:2
标识
DOI:10.1016/j.neucom.2024.127642
摘要

The realm of aspect-based sentiment analysis (ABSA), which delves into the nuanced sentiment expressions individuals hold towards specific services or products, has demonstrated immense potential in real-world applications. Recently, ABSA has evolved into the development of aspect-based sentiment quadruple extraction (ASQP). ASQP's objective is to predict four crucial sentiment elements: aspect, sentiment, opinion and category, where such comprehensive approach paints a holistic description of sentiment, facilitating downstream applications. However, prevailing ASQP models suffer from various limitations, such as inefficiency in decoding, inadequate handling of implicit aspects and opinions, and underutilization of structural information. In this paper, we explore an innovative approach to enhance ASQP. Firstly, we adopt a pointer-based non-autoregressive generative framework, enabling the parallel generation of all sentiment quadruples. This approach preserves the advantages of generative methods while significantly boosting decoding efficiency. Additionally, we introduce latent variable learning to model the aspect and opinion elements, effectively enhancing our ability to reason about implicit ASQP components. Furthermore, we propose an aspect-and-opinion-guided latent structure to bolster sentiment-aware context learning. This dynamically induced graph structure adapts to the specific requirements of the task, offering optimal support for ASQP. Our method outperforms current state-of-the-art models on four benchmark ASQP datasets, demonstrating its significant superiority. A detailed analysis highlights the benefits of non-autoregressive decoding in achieving high inference efficiency, the effectiveness of the variational module in capturing implicit sentiment elements, and the value of the dynamically induced latent structure in accurate sentiment feature learning. Moreover, our system excels in producing interpretable predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luyao970131发布了新的文献求助30
1秒前
kk完成签到,获得积分10
1秒前
旗亭画壁完成签到 ,获得积分10
2秒前
2秒前
fdscat发布了新的文献求助10
3秒前
4秒前
shu完成签到,获得积分10
5秒前
5秒前
可靠的小兔子完成签到,获得积分10
6秒前
6秒前
等候发布了新的文献求助10
7秒前
达芬岐发布了新的文献求助10
9秒前
9秒前
英姑应助LJHUA采纳,获得10
9秒前
10秒前
xx发布了新的文献求助10
11秒前
贪玩白萱完成签到,获得积分20
11秒前
郑女士专属完成签到,获得积分10
12秒前
张参发布了新的文献求助10
13秒前
哈哈完成签到,获得积分10
13秒前
你说的完成签到 ,获得积分10
14秒前
晴子完成签到,获得积分10
14秒前
15秒前
Orange应助害怕的忆梅采纳,获得10
16秒前
TOP完成签到 ,获得积分10
16秒前
17秒前
哈哈发布了新的文献求助10
17秒前
18秒前
fdscat完成签到,获得积分10
19秒前
阳光发布了新的文献求助30
19秒前
19秒前
柏林寒冬应助阿狸在睡觉采纳,获得10
21秒前
深情安青应助vayne采纳,获得10
21秒前
22秒前
Ljc发布了新的文献求助10
22秒前
Swell发布了新的文献求助10
24秒前
Owen应助郑女士专属采纳,获得10
24秒前
比奇堡不想上班派大星完成签到 ,获得积分10
26秒前
达芬岐完成签到,获得积分10
27秒前
研友_ZA2jm8发布了新的文献求助10
28秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383505
求助须知:如何正确求助?哪些是违规求助? 4506527
关于积分的说明 14024968
捐赠科研通 4416260
什么是DOI,文献DOI怎么找? 2425950
邀请新用户注册赠送积分活动 1418643
关于科研通互助平台的介绍 1396923