EH-former: Regional easy-hard-aware transformer for breast lesion segmentation in ultrasound images

分割 计算机科学 乳腺超声检查 变压器 超声波 病变 人工智能 计算机视觉 三维超声 放射科 模式识别(心理学) 医学 乳腺癌 乳腺摄影术 内科学 外科 物理 癌症 电压 量子力学
作者
Xiaolei Qu,Jiale Zhou,Jue Jiang,Wenhan Wang,Haoran Wang,Shuai Wang,Wenzhong Tang,Xun Lin
出处
期刊:Information Fusion [Elsevier]
卷期号:109: 102430-102430 被引量:18
标识
DOI:10.1016/j.inffus.2024.102430
摘要

Breast lesion segmentation of ultrasound images plays a crucial role in early screening and diagnosis of breast lesions. However, accurately segmenting lesions in breast ultrasound (BUS) images is challenging due to prevalent issues such as low contrast, intense speckle noise, and blurred lesion boundaries. Although existing deep learning-based segmentation models have made significant progress, few have strategically addressed these complex and noisy regional features in BUS images. The easy-to-hard manner in Curriculum Learning (CL) appears promising, but it often remains at the sample level and does not adequately address regional complexities. To address this, we design a region-wise CL to dynamically adjust the focus on hard regional features in BUS images. Specifically, we propose a Regional Easy-Hard-Aware Transformer (EH-Former), structured in two stages for lesion segmentation in BUS images. The first stage incorporates uncertainty estimation for dividing regional difficulty. In the second stage, we propose a novel Adaptive Easy-Hard region Separator (AdaSep), a module employing uncertainty-aware regularization to separate features of varying difficulties, allowing the two streams within EH-Former to focus on learning regional features of different complexities. Additionally, we develop a Dynamic Easy-Hard Feature Fusion (D-Fusion) module, dynamically adjusting the fusion weight of easy and hard regional features based on the current training epoch to achieve progressive regional feature learning. Extensive experimental results on five public datasets show that the proposed EH-Former consistently outperforms state-of-the-art methods in most metrics and exhibits better domain generalization capabilities. Furthermore, our region-wise CL significantly enhances the performance of EH-Former in detecting complex tissue structures and noisy areas that are challenging to segment accurately. The source code is available at https://github.com/lele0109/EH-Former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小梦完成签到,获得积分10
刚刚
寂寞的茹妖完成签到,获得积分10
1秒前
1秒前
祝雲完成签到,获得积分10
2秒前
脑洞疼应助李哲浩采纳,获得30
2秒前
万能图书馆应助echo采纳,获得10
3秒前
小米发布了新的文献求助10
3秒前
3秒前
杨佳霖发布了新的文献求助10
4秒前
金金完成签到,获得积分10
6秒前
高兴可乐发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
李爱国应助yyyyyy采纳,获得10
8秒前
苏靖完成签到,获得积分10
8秒前
10秒前
五条悟应助ma采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
10秒前
专注的问寒应助科研通管家采纳,获得150
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
1351567822应助小米粥24采纳,获得50
10秒前
wy.he应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
x94264482应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得30
11秒前
iNk应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749293
求助须知:如何正确求助?哪些是违规求助? 5457273
关于积分的说明 15363115
捐赠科研通 4888714
什么是DOI,文献DOI怎么找? 2628675
邀请新用户注册赠送积分活动 1576972
关于科研通互助平台的介绍 1533693