清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

EH-former: Regional easy-hard-aware transformer for breast lesion segmentation in ultrasound images

分割 计算机科学 乳腺超声检查 变压器 超声波 病变 人工智能 计算机视觉 三维超声 放射科 模式识别(心理学) 医学 乳腺癌 乳腺摄影术 内科学 外科 物理 癌症 电压 量子力学
作者
Xiaolei Qu,Jiale Zhou,Jue Jiang,Wenhan Wang,Haoran Wang,Shuai Wang,Wenzhong Tang,Xun Lin
出处
期刊:Information Fusion [Elsevier BV]
卷期号:109: 102430-102430 被引量:18
标识
DOI:10.1016/j.inffus.2024.102430
摘要

Breast lesion segmentation of ultrasound images plays a crucial role in early screening and diagnosis of breast lesions. However, accurately segmenting lesions in breast ultrasound (BUS) images is challenging due to prevalent issues such as low contrast, intense speckle noise, and blurred lesion boundaries. Although existing deep learning-based segmentation models have made significant progress, few have strategically addressed these complex and noisy regional features in BUS images. The easy-to-hard manner in Curriculum Learning (CL) appears promising, but it often remains at the sample level and does not adequately address regional complexities. To address this, we design a region-wise CL to dynamically adjust the focus on hard regional features in BUS images. Specifically, we propose a Regional Easy-Hard-Aware Transformer (EH-Former), structured in two stages for lesion segmentation in BUS images. The first stage incorporates uncertainty estimation for dividing regional difficulty. In the second stage, we propose a novel Adaptive Easy-Hard region Separator (AdaSep), a module employing uncertainty-aware regularization to separate features of varying difficulties, allowing the two streams within EH-Former to focus on learning regional features of different complexities. Additionally, we develop a Dynamic Easy-Hard Feature Fusion (D-Fusion) module, dynamically adjusting the fusion weight of easy and hard regional features based on the current training epoch to achieve progressive regional feature learning. Extensive experimental results on five public datasets show that the proposed EH-Former consistently outperforms state-of-the-art methods in most metrics and exhibits better domain generalization capabilities. Furthermore, our region-wise CL significantly enhances the performance of EH-Former in detecting complex tissue structures and noisy areas that are challenging to segment accurately. The source code is available at https://github.com/lele0109/EH-Former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heisa完成签到,获得积分10
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
斯文败类应助萝卜猪采纳,获得10
2分钟前
2分钟前
萝卜猪发布了新的文献求助10
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
zero完成签到,获得积分10
3分钟前
3分钟前
烨枫晨曦完成签到,获得积分10
3分钟前
zero发布了新的文献求助10
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
new1完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助50
4分钟前
顾建瑜完成签到,获得积分20
4分钟前
顾建瑜发布了新的文献求助10
5分钟前
FashionBoy应助顾建瑜采纳,获得10
5分钟前
monica366完成签到,获得积分10
6分钟前
传奇3应助mumu采纳,获得10
6分钟前
6分钟前
6分钟前
xiaoleihu完成签到 ,获得积分10
6分钟前
Boren发布了新的文献求助10
6分钟前
ljx完成签到 ,获得积分10
6分钟前
狂野的含烟完成签到 ,获得积分10
6分钟前
SDNUDRUG完成签到,获得积分10
6分钟前
Boren完成签到,获得积分10
6分钟前
7分钟前
mumu发布了新的文献求助10
7分钟前
mumu完成签到 ,获得积分10
7分钟前
7分钟前
洒家完成签到 ,获得积分10
7分钟前
达克赛德完成签到 ,获得积分10
7分钟前
7分钟前
好的名字能让牛马更好地工作完成签到,获得积分10
8分钟前
8分钟前
GPTea应助科研通管家采纳,获得20
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5105312
求助须知:如何正确求助?哪些是违规求助? 4315236
关于积分的说明 13444232
捐赠科研通 4143830
什么是DOI,文献DOI怎么找? 2270695
邀请新用户注册赠送积分活动 1273228
关于科研通互助平台的介绍 1210332