EH-former: Regional easy-hard-aware transformer for breast lesion segmentation in ultrasound images

分割 计算机科学 乳腺超声检查 变压器 超声波 病变 人工智能 计算机视觉 三维超声 放射科 模式识别(心理学) 医学 乳腺癌 乳腺摄影术 内科学 外科 物理 癌症 电压 量子力学
作者
Xiaolei Qu,Jiale Zhou,Jue Jiang,Wenhan Wang,Haoran Wang,Shuai Wang,Wenzhong Tang,Xun Lin
出处
期刊:Information Fusion [Elsevier]
卷期号:109: 102430-102430 被引量:1
标识
DOI:10.1016/j.inffus.2024.102430
摘要

Breast lesion segmentation of ultrasound images plays a crucial role in early screening and diagnosis of breast lesions. However, accurately segmenting lesions in breast ultrasound (BUS) images is challenging due to prevalent issues such as low contrast, intense speckle noise, and blurred lesion boundaries. Although existing deep learning-based segmentation models have made significant progress, few have strategically addressed these complex and noisy regional features in BUS images. The easy-to-hard manner in Curriculum Learning (CL) appears promising, but it often remains at the sample level and does not adequately address regional complexities. To address this, we design a region-wise CL to dynamically adjust the focus on hard regional features in BUS images. Specifically, we propose a Regional Easy-Hard-Aware Transformer (EH-Former), structured in two stages for lesion segmentation in BUS images. The first stage incorporates uncertainty estimation for dividing regional difficulty. In the second stage, we propose a novel Adaptive Easy-Hard region Separator (AdaSep), a module employing uncertainty-aware regularization to separate features of varying difficulties, allowing the two streams within EH-Former to focus on learning regional features of different complexities. Additionally, we develop a Dynamic Easy-Hard Feature Fusion (D-Fusion) module, dynamically adjusting the fusion weight of easy and hard regional features based on the current training epoch to achieve progressive regional feature learning. Extensive experimental results on five public datasets show that the proposed EH-Former consistently outperforms state-of-the-art methods in most metrics and exhibits better domain generalization capabilities. Furthermore, our region-wise CL significantly enhances the performance of EH-Former in detecting complex tissue structures and noisy areas that are challenging to segment accurately. The source code is available at https://github.com/lele0109/EH-Former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdahjjyk完成签到,获得积分10
刚刚
Owen应助LYP采纳,获得10
1秒前
Linyi发布了新的文献求助10
4秒前
sdahjjyk发布了新的文献求助10
4秒前
城北徐公完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
8秒前
11秒前
诗蕊完成签到 ,获得积分10
11秒前
zzzzzxh发布了新的文献求助10
11秒前
城北徐公发布了新的文献求助10
11秒前
领导范儿应助鄂成危采纳,获得10
12秒前
999发布了新的文献求助10
13秒前
13秒前
LYP发布了新的文献求助10
15秒前
我是老大应助溧雁采纳,获得30
15秒前
小陈老板发布了新的文献求助10
17秒前
宠仙发布了新的文献求助10
17秒前
潇洒大开发布了新的文献求助10
17秒前
李爱国应助99999sun采纳,获得10
17秒前
18秒前
20秒前
21秒前
21秒前
张世纪完成签到,获得积分10
21秒前
打打应助999采纳,获得10
22秒前
汉堡包应助曾经二娘采纳,获得10
22秒前
乐观沛白发布了新的文献求助10
24秒前
yyygc完成签到,获得积分10
25秒前
西西发布了新的文献求助10
28秒前
oky完成签到 ,获得积分10
30秒前
传奇3应助Ler采纳,获得10
30秒前
852应助yyygc采纳,获得10
31秒前
小蘑菇应助HLT采纳,获得10
32秒前
领导范儿应助鄂成危采纳,获得10
32秒前
完美世界应助乐观沛白采纳,获得10
32秒前
科研通AI2S应助木木酱采纳,获得10
36秒前
36秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157455
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878686
捐赠科研通 2467233
什么是DOI,文献DOI怎么找? 1313279
科研通“疑难数据库(出版商)”最低求助积分说明 630380
版权声明 601919