EH-former: Regional easy-hard-aware transformer for breast lesion segmentation in ultrasound images

分割 计算机科学 乳腺超声检查 变压器 超声波 病变 人工智能 计算机视觉 三维超声 放射科 模式识别(心理学) 医学 乳腺癌 乳腺摄影术 内科学 外科 物理 癌症 电压 量子力学
作者
Xiaolei Qu,Jiale Zhou,Jue Jiang,Wenhan Wang,Haoran Wang,Shuai Wang,Wenzhong Tang,Xun Lin
出处
期刊:Information Fusion [Elsevier]
卷期号:109: 102430-102430 被引量:1
标识
DOI:10.1016/j.inffus.2024.102430
摘要

Breast lesion segmentation of ultrasound images plays a crucial role in early screening and diagnosis of breast lesions. However, accurately segmenting lesions in breast ultrasound (BUS) images is challenging due to prevalent issues such as low contrast, intense speckle noise, and blurred lesion boundaries. Although existing deep learning-based segmentation models have made significant progress, few have strategically addressed these complex and noisy regional features in BUS images. The easy-to-hard manner in Curriculum Learning (CL) appears promising, but it often remains at the sample level and does not adequately address regional complexities. To address this, we design a region-wise CL to dynamically adjust the focus on hard regional features in BUS images. Specifically, we propose a Regional Easy-Hard-Aware Transformer (EH-Former), structured in two stages for lesion segmentation in BUS images. The first stage incorporates uncertainty estimation for dividing regional difficulty. In the second stage, we propose a novel Adaptive Easy-Hard region Separator (AdaSep), a module employing uncertainty-aware regularization to separate features of varying difficulties, allowing the two streams within EH-Former to focus on learning regional features of different complexities. Additionally, we develop a Dynamic Easy-Hard Feature Fusion (D-Fusion) module, dynamically adjusting the fusion weight of easy and hard regional features based on the current training epoch to achieve progressive regional feature learning. Extensive experimental results on five public datasets show that the proposed EH-Former consistently outperforms state-of-the-art methods in most metrics and exhibits better domain generalization capabilities. Furthermore, our region-wise CL significantly enhances the performance of EH-Former in detecting complex tissue structures and noisy areas that are challenging to segment accurately. The source code is available at https://github.com/lele0109/EH-Former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sptyzl完成签到 ,获得积分10
1秒前
彭于晏应助mnm采纳,获得10
1秒前
叙余完成签到 ,获得积分10
1秒前
1秒前
狗狗应助April采纳,获得20
1秒前
科研通AI2S应助笑笑采纳,获得10
2秒前
靳乐乐完成签到,获得积分10
2秒前
ccyrichard完成签到,获得积分10
2秒前
3秒前
su完成签到,获得积分20
3秒前
天天快乐应助刘怀蕊采纳,获得10
3秒前
3秒前
t_suo发布了新的文献求助30
4秒前
LJL发布了新的文献求助10
5秒前
xyz发布了新的文献求助10
5秒前
婷婷完成签到,获得积分10
5秒前
翔哥完成签到,获得积分10
6秒前
shotgod发布了新的文献求助10
6秒前
消烦员完成签到 ,获得积分10
6秒前
杳鸢应助su采纳,获得30
8秒前
good发布了新的文献求助10
8秒前
chenxin7271完成签到,获得积分10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
yizhiGao应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
马蹄应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
研友_LX66qZ完成签到,获得积分10
8秒前
传奇3应助科研通管家采纳,获得30
9秒前
Akim应助火星上的听云采纳,获得10
9秒前
唐博凡应助科研通管家采纳,获得10
9秒前
西柚完成签到,获得积分10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
kingwill应助科研通管家采纳,获得20
9秒前
SciGPT应助洛鸢采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762