已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual-path multi-scale attention residual network for fault diagnosis of rolling bearings under complex operating conditions

残余物 断层(地质) 方位(导航) 计算机科学 特征(语言学) 路径(计算) 比例(比率) 人工智能 代表(政治) 特征提取 对偶(语法数字) 数据挖掘 模式识别(心理学) 算法 艺术 文学类 地震学 地质学 语言学 哲学 物理 量子力学 政治 政治学 法学 程序设计语言
作者
Linfeng Deng,Yuanwen Zhang,Cheng Zhao,Guojun Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086106-086106 被引量:2
标识
DOI:10.1088/1361-6501/ad3f39
摘要

Abstract Rolling bearing faults inevitably occur during the long-term continuous operation of rotating machinery. Therefore, fault diagnosis is greatly important for ensuring the normal and safe operation of rolling bearings. However, the complexity and diversity of working conditions of rolling bearings present a significant challenge in extracting fault characteristics accurately, which further affects the ultimate fault diagnosis results. In this article, we propose a new model, called dual-path multi-scale attention residual network (DPMARN), for diagnosing bearing faults under complex operating conditions. DPMARN can effectively capture the feature-feature correlation information at different scales, which is more beneficial for fusing fault features at different scales to improve the model’s performance. The main contributions of this work are summarized as follows: (1) the designed dual-path network model which incorporates parallel multi-scale branches of convolutional kernels and serially connects skip-layer multi-scale branches can integrate both low-frequency and high-frequency information and enhance the multi-scale feature extraction and complex data representation abilities. (2) The squeeze-and-excitation attention mechanism is embedded into the residual blocks to improve the ability of learning feature correlations and utilizing feature information effectively, which is helpful for extracting important fault characteristics. Extensive experiments conducted on two public bearing datasets demonstrate the superior performance of the DPMARN model for addressing the complex fault diagnosis problem. These results indicate that our proposed approach provides an effective solution for fault diagnosis of rolling bearings under complex operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级的妙晴完成签到 ,获得积分10
刚刚
1秒前
雪白寄容关注了科研通微信公众号
1秒前
Hello应助Zhy采纳,获得10
1秒前
嘉仔发布了新的文献求助10
2秒前
韩凡发布了新的文献求助10
2秒前
3秒前
林先生发布了新的文献求助10
5秒前
DSFSD完成签到,获得积分10
6秒前
XIAOWANG发布了新的文献求助10
7秒前
7秒前
value发布了新的文献求助10
11秒前
CC完成签到,获得积分10
13秒前
14秒前
山居秋暝完成签到 ,获得积分10
14秒前
Good_小鬼完成签到,获得积分10
15秒前
bkagyin应助XIAOWANG采纳,获得10
16秒前
Orange应助XIAOWANG采纳,获得30
16秒前
yydragen应助XIAOWANG采纳,获得30
16秒前
17秒前
18秒前
孙哲发布了新的文献求助10
21秒前
Zhy给Zhy的求助进行了留言
22秒前
量子星尘发布了新的文献求助10
23秒前
几两发布了新的文献求助20
23秒前
充电宝应助123采纳,获得10
25秒前
华仔应助ZJH采纳,获得10
27秒前
27秒前
27秒前
Zoe完成签到,获得积分10
28秒前
CodeCraft应助沉默访冬采纳,获得10
30秒前
TTTTTT发布了新的文献求助10
30秒前
Lousia完成签到,获得积分10
30秒前
31秒前
Lucas发布了新的文献求助30
32秒前
周丹完成签到,获得积分10
33秒前
Jasper应助张小龙采纳,获得10
35秒前
虾滑丸子发布了新的文献求助10
35秒前
无私的薯片完成签到,获得积分20
35秒前
勤劳母鸡完成签到 ,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021