Dual-path multi-scale attention residual network for fault diagnosis of rolling bearings under complex operating conditions

残余物 断层(地质) 方位(导航) 计算机科学 特征(语言学) 路径(计算) 比例(比率) 人工智能 代表(政治) 特征提取 对偶(语法数字) 数据挖掘 模式识别(心理学) 算法 艺术 文学类 地震学 地质学 语言学 哲学 物理 量子力学 政治 政治学 法学 程序设计语言
作者
Liya Deng,Yuanwen Zhang,Cheng Zhao,G.N. Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad3f39
摘要

Abstract Rolling bearing faults inevitably occur during the long-term continuous operation of rotating machinery. Therefore, fault diagnosis is greatly important for ensuring the normal and safe operation of rolling bearings. However, the complexity and diversity of working conditions of rolling bearings present a significant challenge in extracting fault characteristics accurately, which further affects the ultimate fault diagnosis results. In this article, we propose a new model, called dual-path multi-scale attention residual network (DPMARN), for diagnosing bearing faults under complex operating conditions. DPMARN can effectively capture the feature-feature correlation information at different scales, which is more beneficial for fusing fault features at different scales to improve the model’s performance. The main contributions of this work are summarized as follows: (1) The designed dual-path network model which incorporates parallel multi-scale branches of convolutional kernels and serially connects skip-layer multi-scale branches can integrate both low-frequency and high-frequency information and enhance the multi-scale feature extraction and complex data representation abilities. (2) The SE attention mechanism is embedded into the residual blocks to improve the ability of learning feature correlations and utilizing feature information effectively, which is helpful for extracting important fault characteristics. Extensive experiments conducted on two public bearing datasets demonstrate the superior performance of the DPMARN model for addressing the complex fault diagnosis problem. These results indicate that our proposed approach provides an effective solution for fault diagnosis of rolling bearings under complex operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史塔克发布了新的文献求助10
1秒前
科研通AI2S应助LIN采纳,获得10
4秒前
4秒前
6秒前
7秒前
8秒前
12秒前
lucas发布了新的文献求助10
14秒前
彩色的过客完成签到 ,获得积分10
14秒前
不配.应助谦让的小姜采纳,获得10
17秒前
ggplot2发布了新的文献求助10
18秒前
my123完成签到,获得积分10
21秒前
丘比特应助lucas采纳,获得10
22秒前
23秒前
23秒前
卡戎529发布了新的文献求助10
24秒前
25秒前
HEIKU应助hwq123采纳,获得10
26秒前
丘比特应助史塔克采纳,获得10
26秒前
聪聪发布了新的文献求助10
27秒前
咖啡不苦发布了新的文献求助30
29秒前
书生完成签到,获得积分10
30秒前
31秒前
32秒前
兀拉拉完成签到,获得积分10
33秒前
Eric完成签到 ,获得积分10
35秒前
38秒前
火星完成签到 ,获得积分10
40秒前
完美世界应助wlz采纳,获得10
41秒前
英俊的铭应助卡戎529采纳,获得10
41秒前
鹅鹅发布了新的文献求助10
41秒前
43秒前
许win发布了新的文献求助10
43秒前
xjcy应助hwq123采纳,获得10
44秒前
Leex关注了科研通微信公众号
44秒前
科研通AI2S应助谦让的小姜采纳,获得10
45秒前
48秒前
筱筱潇潇发布了新的文献求助30
48秒前
48秒前
楚天阔发布了新的文献求助10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079