HCL-MTSAD: Hierarchical Contrastive Consistency Learning for Accurate Detection of Industrial Multivariate Time Series Anomalies

异常检测 一致性(知识库) 水准点(测量) 计算机科学 多元统计 异常(物理) 数据挖掘 过程(计算) 人工智能 时间戳 一般化 样品(材料) 系列(地层学) 数据一致性 机器学习 数学 古生物学 数学分析 化学 物理 计算机安全 大地测量学 凝聚态物理 色谱法 生物 地理 操作系统
作者
Haili Sun,Yan Huang,Lansheng Han,Cai Fu,Chunjie Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.08224
摘要

Multivariate Time Series (MTS) anomaly detection focuses on pinpointing samples that diverge from standard operational patterns, which is crucial for ensuring the safety and security of industrial applications. The primary challenge in this domain is to develop representations capable of discerning anomalies effectively. The prevalent methods for anomaly detection in the literature are predominantly reconstruction-based and predictive in nature. However, they typically concentrate on a single-dimensional instance level, thereby not fully harnessing the complex associations inherent in industrial MTS. To address this issue, we propose a novel self-supervised hierarchical contrastive consistency learning method for detecting anomalies in MTS, named HCL-MTSAD. It innovatively leverages data consistency at multiple levels inherent in industrial MTS, systematically capturing consistent associations across four latent levels-measurement, sample, channel, and process. By developing a multi-layer contrastive loss, HCL-MTSAD can extensively mine data consistency and spatio-temporal association, resulting in more informative representations. Subsequently, an anomaly discrimination module, grounded in self-supervised hierarchical contrastive learning, is designed to detect timestamp-level anomalies by calculating multi-scale data consistency. Extensive experiments conducted on six diverse MTS datasets retrieved from real cyber-physical systems and server machines, in comparison with 20 baselines, indicate that HCL-MTSAD's anomaly detection capability outperforms the state-of-the-art benchmark models by an average of 1.8\% in terms of F1 score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
liu11发布了新的文献求助10
1秒前
1秒前
叶访云发布了新的文献求助10
2秒前
欣慰元蝶应助leslie采纳,获得10
2秒前
2秒前
支原体感染力完成签到,获得积分10
3秒前
无花果应助嘉嘉嘉嘉嘉采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
星辰大海应助龙山采纳,获得10
3秒前
Aoopiy完成签到,获得积分10
3秒前
隐形曼青应助李佳采纳,获得10
4秒前
犹豫酸奶发布了新的文献求助10
5秒前
敏感小霸王关注了科研通微信公众号
5秒前
带象发布了新的文献求助10
5秒前
水水完成签到,获得积分20
5秒前
5秒前
充电宝应助风清扬采纳,获得10
5秒前
汤圆发布了新的文献求助10
6秒前
小二郎应助王哈哈采纳,获得10
6秒前
6秒前
大碗发布了新的文献求助20
6秒前
玄风完成签到,获得积分0
6秒前
大模型应助34Kenny采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
思源应助LooQueSiento采纳,获得20
8秒前
8秒前
WINK完成签到,获得积分10
8秒前
NexusExplorer应助阿里嘎多采纳,获得10
9秒前
赫诗桃发布了新的文献求助10
9秒前
楠810217完成签到,获得积分10
9秒前
哲999发布了新的文献求助10
9秒前
9秒前
1473057467完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594