HCL-MTSAD: Hierarchical Contrastive Consistency Learning for Accurate Detection of Industrial Multivariate Time Series Anomalies

异常检测 一致性(知识库) 水准点(测量) 计算机科学 多元统计 异常(物理) 数据挖掘 过程(计算) 人工智能 时间戳 一般化 样品(材料) 系列(地层学) 数据一致性 机器学习 数学 古生物学 数学分析 化学 物理 计算机安全 大地测量学 凝聚态物理 色谱法 生物 地理 操作系统
作者
Haili Sun,Yan Huang,Lansheng Han,Cai Fu,Chunjie Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.08224
摘要

Multivariate Time Series (MTS) anomaly detection focuses on pinpointing samples that diverge from standard operational patterns, which is crucial for ensuring the safety and security of industrial applications. The primary challenge in this domain is to develop representations capable of discerning anomalies effectively. The prevalent methods for anomaly detection in the literature are predominantly reconstruction-based and predictive in nature. However, they typically concentrate on a single-dimensional instance level, thereby not fully harnessing the complex associations inherent in industrial MTS. To address this issue, we propose a novel self-supervised hierarchical contrastive consistency learning method for detecting anomalies in MTS, named HCL-MTSAD. It innovatively leverages data consistency at multiple levels inherent in industrial MTS, systematically capturing consistent associations across four latent levels-measurement, sample, channel, and process. By developing a multi-layer contrastive loss, HCL-MTSAD can extensively mine data consistency and spatio-temporal association, resulting in more informative representations. Subsequently, an anomaly discrimination module, grounded in self-supervised hierarchical contrastive learning, is designed to detect timestamp-level anomalies by calculating multi-scale data consistency. Extensive experiments conducted on six diverse MTS datasets retrieved from real cyber-physical systems and server machines, in comparison with 20 baselines, indicate that HCL-MTSAD's anomaly detection capability outperforms the state-of-the-art benchmark models by an average of 1.8\% in terms of F1 score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
da_line发布了新的文献求助10
刚刚
1秒前
今后应助Okayoooooo采纳,获得10
2秒前
2秒前
大方的笑萍完成签到 ,获得积分10
4秒前
高高笙发布了新的文献求助10
6秒前
思睿拜完成签到,获得积分10
7秒前
二十四桥发布了新的文献求助30
7秒前
8秒前
8秒前
小蘑菇应助行路人采纳,获得10
8秒前
8秒前
9秒前
研友_nPkl9L发布了新的文献求助30
10秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
啊元完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
薄荷糖发布了新的文献求助10
14秒前
Jackie_Li发布了新的文献求助10
14秒前
15秒前
啊元发布了新的文献求助10
17秒前
青衣北风发布了新的文献求助10
18秒前
shinn发布了新的文献求助10
19秒前
19秒前
yan完成签到,获得积分20
19秒前
20秒前
20秒前
薄荷糖完成签到,获得积分10
23秒前
SYLH应助武雨寒采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517