Associations of metals and metal mixtures with glucose homeostasis: A combined bibliometric and epidemiological study

化学 葡萄糖稳态 类金属 环境化学 金属 糖尿病 医学 内分泌学 胰岛素抵抗 有机化学
作者
Kai Li,Yisen Yang,Jiaxin Zhao,Quan Zhou,Yanbing Li,Ming Yang,Yaoyu Hu,Jing Xu,Meiduo Zhao,Qun Xu
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:470: 134224-134224 被引量:2
标识
DOI:10.1016/j.jhazmat.2024.134224
摘要

This study employs a combination of bibliometric and epidemiological methodologies to investigate the relationship between metal exposure and glucose homeostasis. The bibliometric analysis quantitatively assessed this field, focusing on study design, predominant metals, analytical techniques, and citation trends. Furthermore, we analyzed cross-sectional data from Beijing, examining the associations between 14 blood metals and 6 glucose homeostasis markers using generalized linear models (GLM). Key metals were identified using LASSO-PIPs criteria, and Bayesian kernel machine regression (BKMR) was applied to assess metal mixtures, introducing an "Overall Positive/Negative Effect" concept for deeper analysis. Our findings reveal an increasing research interest, particularly in selenium, zinc, cadmium, lead, and manganese. Urine (27.6%), serum (19.0%), and whole blood (19.0%) were the primary sample types, with cross-sectional studies (49.5%) as the dominant design. Epidemiologically, significant associations were found between 9 metals-cobalt, copper, lithium, manganese, nickel, lead, selenium, vanadium, zinc-and glucose homeostasis. Notably, positive-metal mixtures exhibited a significant overall positive effect on insulin levels, and notable interactions involving nickel were identified. These finding not only map the knowledge landscape of research in this domain but also introduces a novel perspective on the analysis strategies for metal mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJZZ发布了新的文献求助10
刚刚
3秒前
啦啦啦完成签到,获得积分10
3秒前
852应助yxc采纳,获得10
3秒前
完美世界应助清子采纳,获得10
4秒前
WWW发布了新的文献求助30
4秒前
5秒前
遇见胡桃夹子完成签到,获得积分10
5秒前
宋牛奶的猫关注了科研通微信公众号
5秒前
胖头锦鲤发布了新的文献求助10
5秒前
hanqun1111完成签到,获得积分10
5秒前
vlots应助CreaJOE采纳,获得30
5秒前
慕青应助游悠悠采纳,获得10
5秒前
星辰大海应助vegetable采纳,获得10
6秒前
科研通AI6应助DORAAA采纳,获得10
6秒前
7秒前
jyh发布了新的文献求助10
7秒前
浮游应助guihai采纳,获得10
8秒前
大气伯云发布了新的文献求助10
10秒前
lw发布了新的文献求助10
12秒前
12秒前
思源应助淡定蜗牛采纳,获得10
13秒前
脑洞疼应助睡不醒的xx采纳,获得10
13秒前
科研通AI6应助yyy采纳,获得30
14秒前
阿氏之光完成签到,获得积分10
14秒前
单薄黑米发布了新的文献求助30
15秒前
游悠悠发布了新的文献求助10
15秒前
花影移完成签到,获得积分10
15秒前
无极微光应助ZZZ采纳,获得20
16秒前
18秒前
有志不在年糕完成签到,获得积分10
19秒前
老北京发布了新的文献求助10
20秒前
lw完成签到,获得积分20
21秒前
morlison完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997