Multi-scale feature enhanced spatio-temporal learning for traffic flow forecasting

特征(语言学) 比例(比率) 计算机科学 流量(数学) 人工智能 地理 地图学 数学 哲学 语言学 几何学
作者
Shengdong Du,Tao Yang,Fei Teng,Junbo Zhang,Tianrui Li,Yu Zheng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:294: 111787-111787 被引量:2
标识
DOI:10.1016/j.knosys.2024.111787
摘要

Traffic flow forecasting is a critical task within Intelligent Transportation Systems (ITS). It's main challenge lies in effectively modeling the complex traffic related big data, including intricate intra-channel and inter-channel correlations, as well as dynamic spatio-temporal dependencies. Furthermore, current methods continue to encounter bottlenecks in extracting and learning complex and dynamic spatio-temporal features from the original traffic data for long-term prediction, resulting in challenges related to model robustness and generalization. In response to these, we introduce a novel deep learning model with multi-scale feature enhancement for traffic flow forecasting, which is based on the attention mechanism and the graph convolution learning framework. We first introduce the integration design of the spatio-temporal dependency features enhancement module with the base attention learning block through a memory embedding layer. Then we propose a traffic network topology features enhancement module with the spatial attention layer, enabling dynamic enhanced learning of spatio-temporal dependency features. This comprehensive approach enables the model to effectively learn complex and dynamic spatio-temporal dependencies, capturing key patterns in traffic flow data. Through extensive experimental evaluations using traffic flow forecasting benchmarks, we have validated the superior performance of the proposed model over the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别摆烂了发布了新的文献求助10
3秒前
3秒前
啊哭发布了新的文献求助10
4秒前
PhD_Lee73完成签到 ,获得积分10
7秒前
顶顶小明完成签到,获得积分10
9秒前
yx_cheng应助博修采纳,获得50
9秒前
Heng完成签到,获得积分10
10秒前
13秒前
传奇3应助ppap4采纳,获得10
15秒前
银河以北鸿艳最美完成签到,获得积分10
16秒前
18秒前
Owen应助东堂采纳,获得10
18秒前
Lucas应助伶俐的如松采纳,获得10
19秒前
礼礼发布了新的文献求助10
19秒前
啦啦啦完成签到,获得积分10
20秒前
Owen应助别摆烂了采纳,获得10
20秒前
善学以致用应助别摆烂了采纳,获得10
20秒前
Liufgui应助别摆烂了采纳,获得10
20秒前
Jasper应助别摆烂了采纳,获得10
20秒前
天天快乐应助别摆烂了采纳,获得10
20秒前
CipherSage应助别摆烂了采纳,获得10
20秒前
今后应助别摆烂了采纳,获得10
20秒前
FashionBoy应助别摆烂了采纳,获得10
20秒前
天天快乐应助别摆烂了采纳,获得10
20秒前
orixero应助别摆烂了采纳,获得10
21秒前
Rondab应助青云采纳,获得10
21秒前
22秒前
syvshc应助淡淡涫采纳,获得10
22秒前
27秒前
Alice完成签到,获得积分10
27秒前
充电宝应助斜玉采纳,获得10
28秒前
Alice发布了新的文献求助10
29秒前
细腻千秋完成签到 ,获得积分10
31秒前
可鹿丽发布了新的文献求助10
33秒前
33秒前
35秒前
35秒前
Claudia完成签到,获得积分10
37秒前
Allen发布了新的文献求助10
38秒前
qcwindchasing完成签到 ,获得积分10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998986
求助须知:如何正确求助?哪些是违规求助? 3538486
关于积分的说明 11274314
捐赠科研通 3277378
什么是DOI,文献DOI怎么找? 1807541
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810080