Machine Learning‐Based Detection of Weather Fronts and Associated Extreme Precipitation in Historical and Future Climates

降水 气候学 气候变化 环境科学 北半球 前线(军事) 强迫(数学) 气候模式 极端天气 大气科学 气象学 地质学 地理 海洋学
作者
Katherine Dagon,John Truesdale,J. Biard,Kenneth E. Kunkel,Gerald A. Meehl,María J. Molina
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:127 (21) 被引量:1
标识
DOI:10.1029/2022jd037038
摘要

Extreme precipitation events, including those associated with weather fronts, have wide-ranging impacts across the world. Here we use a deep learning algorithm to identify weather fronts in high resolution Community Earth System Model (CESM) simulations over the contiguous United States (CONUS), and evaluate the results using observational and reanalysis products. We further compare results between CESM simulations using present-day and future climate forcing, to study how these features might change with climate change. We find that detected front frequencies in CESM have seasonally varying spatial patterns and responses to climate change and are found to be associated with modeled changes in large scale circulation such as the jet stream. We also associate the detected fronts with precipitation and find that total and extreme frontal precipitation mostly decreases with climate change, with some seasonal and regional differences. Decreases in Northern Hemisphere summer frontal precipitation are largely driven by changes in the frequency of different front types, especially cold and stationary fronts. On the other hand, Northern Hemisphere winter exhibits some regional increases in frontal precipitation that are largely driven by changes in frontal precipitation intensity. While CONUS mean and extreme precipitation generally increase during all seasons in these climate change simulations, the likelihood of frontal extreme precipitation decreases, demonstrating that extreme precipitation has seasonally varying sources and mechanisms that will continue to evolve with climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻的易巧完成签到 ,获得积分10
刚刚
Viva完成签到,获得积分10
2秒前
2秒前
跋扈完成签到,获得积分10
3秒前
斯蒂芬库外完成签到,获得积分10
3秒前
KimTran完成签到,获得积分10
3秒前
可爱的小丸子完成签到,获得积分10
4秒前
Kitty完成签到,获得积分10
5秒前
尊敬枕头完成签到 ,获得积分10
6秒前
开心夏旋完成签到 ,获得积分10
6秒前
科研王子完成签到,获得积分10
7秒前
无尽夏完成签到,获得积分10
8秒前
汉堡包应助Viva采纳,获得10
10秒前
谨慎的雨灵完成签到,获得积分10
10秒前
10秒前
ws_WS_完成签到 ,获得积分10
13秒前
奋斗的念烟完成签到,获得积分10
14秒前
巴啦啦能量完成签到 ,获得积分10
14秒前
hang发布了新的文献求助10
15秒前
sasa完成签到,获得积分10
16秒前
英姑应助探险家蝈蝈采纳,获得10
16秒前
锂离子完成签到,获得积分10
17秒前
木木完成签到,获得积分10
20秒前
小绵羊完成签到,获得积分20
21秒前
24秒前
24秒前
窝窝头完成签到,获得积分10
25秒前
aaa0001984完成签到,获得积分0
25秒前
26秒前
哒哒发布了新的文献求助10
29秒前
30秒前
hang完成签到,获得积分10
30秒前
cen完成签到,获得积分10
34秒前
淡然鸡翅完成签到,获得积分10
36秒前
36秒前
探险家蝈蝈完成签到,获得积分20
37秒前
从容的水壶完成签到,获得积分10
37秒前
ttkd11完成签到,获得积分10
37秒前
柒月完成签到 ,获得积分10
39秒前
田茂青完成签到,获得积分10
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175