介电泳
微流控
化学
等离子体
体积流量
电压
分析化学(期刊)
炸薯条
沉积作用
光电子学
纳米技术
色谱法
材料科学
机械
电气工程
量子力学
生物
沉积物
物理
工程类
古生物学
作者
Somayyeh Bakhtiaridoost,Hamidreza Habibiyan,Hassan Ghafoorifard
标识
DOI:10.1016/j.aca.2022.340641
摘要
The growing interest in lab-on-a-chip systems for plasma separation has led to the presentation of various devices. Trench-based devices benefiting from gravitational sedimentation are efficient structures with air-locking and low speed-drawbacks. The present study introduces a fast, hemolysis-free, highly efficient blood plasma separation microfluidic device. The proposed device is based on gravitational sedimentation combined with dielectrophoresis force to promote the purity of the separated plasma, reduce the separation process time, and overcome the air-locking problem. The effect of geometrical parameters on the separation process is investigated using finite element analysis to attain optimal design specifications. A drop of whole blood (10 μl) is injected into the fabricated chip at four flow rates of 70 nl/s to 100 nl/s. It takes less than 4 min to obtain 2.2 μl plasma from undiluted blood without losing plasma proteins. Additionally, a porous Melt-Blown Polypropylene (MBPP) layer is used to eliminate the air-locking problem, which in previous trench-based microsystems led to time-consuming device preparation steps. Blood samples with various hematocrits (15%-65%) are tested with the applied voltages of 0-20 Vpp through the optimized structure. A purity of 99.98% ± 0.02% (evaluated by hemocytometry) is achieved using optimized dielectrophoresis force by the applied voltage of 20 Vpp, which is more than the previous studies. The UV-Visible spectroscopy results confirm obtaining a non-hemolyzed sample at a flow rate of 70 nl/s. The proposed device achieves a relative increase in the flow rate compared to similar previous studies while maintaining the high quality of the separated plasma. This achievement lies in using the MBPP layer and combining two separation methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI