纳米片
超级电容器
电解质
化学工程
碳纤维
多孔性
材料科学
热解
功率密度
电化学
纳米技术
化学
电极
复合材料
复合数
功率(物理)
量子力学
物理
工程类
物理化学
作者
Chuang Qiu,Mingyuan Zuo,Daping Qiu,Jiakai Cao,Xuye Jia,Yifan Li,Changhe Liu,Nianhua Chen,Xiaohong Chen,Min Li
标识
DOI:10.1016/j.electacta.2022.141522
摘要
Porous carbon-based supercapacitors (SCs) are promising electrochemical energy storage devices. However, the unreasonable design of porous carbon leads to poor energy density and unsatisfactory high-temperature cycling stability of SCs. Herein, we synthesize a hierarchical porous carbon nanosheet network by combining self-templated pyrolysis and KOH activation strategies. This carbon nanosheet network exhibits an extremely large active ion-accessible pore volume (V0.76–6 nm=1.654 m3 g−1) and a considerable supermesopore volume (V6–50nm 0.413 m3 g−1), which provide abundant active sites and fast diffusion channels for electrolyte ions, respectively. Futhermore, the enhanced electroactivity of oxygen at high temperature is demonstrated, which provides additional active sites. Inspiringly, the as-constructed EMIMBF4-based SCs can be well serviced at the high temperature of 80 °C with ultra-high energy/power density of 122.23 Wh kg−1/40.6 kW kg−1 and superior durability (81.1% retention after 8000 cycles at 20 A g−1). This work provides insights into the effect of temperature on the electroactivity of oxygen, as well as the construction of porous carbon-based high-temperature SCs with desired performance metrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI