Rapid and accurate classification of Aspergillus ochraceous contamination in Robusta green coffee bean through near-infrared spectral analysis using machine learning

污染 生咖啡 数学 光谱分析 曲霉 园艺 化学 食品科学 生物 植物 物理 生态学 光谱学 量子力学
作者
Nuttapong Ruttanadech,Kittisak Phetpan,Naruebodee Srisang,Siriwan Srisang,Thatchapol Chungcharoen,Warunee Limmun‬,Pannipa Youryon,Pornprapa Kongtragoul
出处
期刊:Food Control [Elsevier BV]
卷期号:145: 109446-109446 被引量:12
标识
DOI:10.1016/j.foodcont.2022.109446
摘要

Near-infrared (NIR) spectral-based classification of Aspergillus ochraceous contamination in the Robusta green coffee bean was investigated. Six different learning algorithms, including linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbors (KNN), decision tree (Tree), Naive Bayes (NB), and quadratic discriminant analysis (QDA), were applied for the investigating purpose. Four classes of fungal contamination on coffee beans, non-fungal contaminated beans on day 1 and day 3 (NCB-D1 and NCB-D3) and fungal contaminated beans on day 1 and day 3 (CB-D1 and CB-D3), were set for the classification intention. Based on the 6 learning algorithms, the Tree approach was optimal, displaying a training accuracy of 97.5%. As proven by the testing dataset, the classification accuracy of the Tree was also at 97.5%. With this number, the Tree could correctly classify 100% between the contaminated and non-contaminated coffee beans. These findings exhibit the potential of the NIR spectroscopy accompanied by machine learning for the early detection of fungal contamination in green coffee beans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Zhang完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
7秒前
圆锥香蕉给ZEcholy的求助进行了留言
8秒前
jisujun发布了新的文献求助10
8秒前
李小宁发布了新的文献求助10
8秒前
11秒前
Stroeve发布了新的文献求助10
12秒前
欧阳月空完成签到,获得积分10
12秒前
12秒前
星辰大海应助李小宁采纳,获得10
13秒前
段一帆发布了新的文献求助10
13秒前
冷艳的姿发布了新的文献求助10
13秒前
14秒前
FIN应助小小采纳,获得30
14秒前
领导范儿应助su采纳,获得10
15秒前
Candy发布了新的文献求助10
15秒前
Rondab应助xiaosu采纳,获得10
16秒前
CodeCraft应助LJJ采纳,获得10
17秒前
17秒前
SYLH应助科研通管家采纳,获得20
18秒前
所所应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
张金蝶完成签到,获得积分10
18秒前
搜集达人应助科研通管家采纳,获得10
19秒前
CAOHOU应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
CAOHOU应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
量子星尘发布了新的文献求助30
19秒前
SYLH应助科研通管家采纳,获得20
19秒前
19秒前
19秒前
19秒前
CAOHOU应助科研通管家采纳,获得10
19秒前
Lyuhng+1完成签到 ,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173