Simulation-based Optimization of Autonomous Driving Behaviors

复制 计算机科学 弹道 领域(数学) 驾驶模拟器 交通模拟 模拟 实时计算 工程类 运输工程 数学 天文 交叉口(航空) 统计 物理 纯数学
作者
Hashmatullah Sadid,Moeid Qurashi,Constantinos Antoniou
标识
DOI:10.1109/itsc55140.2022.9922604
摘要

Microscopic traffic models (MTMs) are widely used for assessing the impacts of autonomous and connected autonomous vehicles (AVs/CAVs). These models use car following (CF) and lane changing models to replicate the AV and CAV driving behaviors. Several studies attempt to replicate the accurate configuration of these behaviors (especially CF behavior) with many state-of-the-art modeling methods. However, they need to define certain parameters either based on assumptions or estimation by trajectory data from the limited field experiment of AVs and CAVs, and the impacts prediction accuracy depends on the definition of these parameters. For human-driven vehicles, these parameters mimic human drivers, whereas, for AVs and CAVs, most of these parameters could be controlled by an agent (AV and CAV). Therefore, it is possible to train AVs and CAVs to behave in a way that could potentially enhance their related impacts, e.g., traffic efficiency, emissions, and safety. Thus, this paper proposes an optimization framework that tends to find sets of optimized driving parameters for AVs and CAVs under different varying scenarios to achieve pre-defined policy targets (e.g., reducing travel time, number of conflicts). The proposed framework comprises an optimization module and a simulation environment. The differential evolution (DE) method is used within the optimization module to find the optimal values of the CF parameters. The simulation environment is a SUMO-based platform where several simulations are run under certain scenario conditions. An experimental setup is designed to apply the proposed framework under different scenarios of mixed traffic and demand situations. The findings of this study reveal that safety could be potentially improved by optimized values of CF model parameters. For each policy, where higher weight is allocated to safety, generated optimized parameters significantly improve safety as well as efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Caicai发布了新的文献求助10
2秒前
2秒前
wts发布了新的文献求助10
3秒前
星辰大海应助zeng采纳,获得10
3秒前
4秒前
Stroeve发布了新的文献求助20
5秒前
5秒前
全能发文章完成签到,获得积分20
5秒前
Sure完成签到,获得积分10
6秒前
韩涵发布了新的文献求助10
8秒前
8秒前
8秒前
共享精神应助柴胡采纳,获得10
11秒前
影默发布了新的文献求助10
11秒前
water应助科研通管家采纳,获得10
12秒前
12秒前
yx_cheng应助科研通管家采纳,获得30
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
鸡鱼蚝发布了新的文献求助10
12秒前
water应助吱吱采纳,获得10
12秒前
12秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
张雷应助科研通管家采纳,获得20
13秒前
13秒前
13秒前
13秒前
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
yx_cheng应助科研通管家采纳,获得30
14秒前
爆米花应助科研通管家采纳,获得30
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
张雷应助科研通管家采纳,获得20
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975871
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201502
捐赠科研通 3256611
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877552
科研通“疑难数据库(出版商)”最低求助积分说明 806430