已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simulation-based Optimization of Autonomous Driving Behaviors

复制 计算机科学 弹道 领域(数学) 驾驶模拟器 交通模拟 模拟 实时计算 工程类 运输工程 数学 统计 物理 交叉口(航空) 天文 纯数学
作者
Hashmatullah Sadid,Moeid Qurashi,Constantinos Antoniou
标识
DOI:10.1109/itsc55140.2022.9922604
摘要

Microscopic traffic models (MTMs) are widely used for assessing the impacts of autonomous and connected autonomous vehicles (AVs/CAVs). These models use car following (CF) and lane changing models to replicate the AV and CAV driving behaviors. Several studies attempt to replicate the accurate configuration of these behaviors (especially CF behavior) with many state-of-the-art modeling methods. However, they need to define certain parameters either based on assumptions or estimation by trajectory data from the limited field experiment of AVs and CAVs, and the impacts prediction accuracy depends on the definition of these parameters. For human-driven vehicles, these parameters mimic human drivers, whereas, for AVs and CAVs, most of these parameters could be controlled by an agent (AV and CAV). Therefore, it is possible to train AVs and CAVs to behave in a way that could potentially enhance their related impacts, e.g., traffic efficiency, emissions, and safety. Thus, this paper proposes an optimization framework that tends to find sets of optimized driving parameters for AVs and CAVs under different varying scenarios to achieve pre-defined policy targets (e.g., reducing travel time, number of conflicts). The proposed framework comprises an optimization module and a simulation environment. The differential evolution (DE) method is used within the optimization module to find the optimal values of the CF parameters. The simulation environment is a SUMO-based platform where several simulations are run under certain scenario conditions. An experimental setup is designed to apply the proposed framework under different scenarios of mixed traffic and demand situations. The findings of this study reveal that safety could be potentially improved by optimized values of CF model parameters. For each policy, where higher weight is allocated to safety, generated optimized parameters significantly improve safety as well as efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助aforgemon采纳,获得10
1秒前
自由代亦发布了新的文献求助10
1秒前
2秒前
longtengfei发布了新的文献求助10
3秒前
3秒前
小酒迟疑发布了新的文献求助10
3秒前
3秒前
3秒前
chaser完成签到,获得积分10
4秒前
烂漫的半双完成签到,获得积分20
4秒前
迟大猫应助11采纳,获得10
5秒前
温偏烫发布了新的文献求助10
6秒前
fan完成签到 ,获得积分10
6秒前
7秒前
科研通AI5应助水门采纳,获得10
7秒前
wwc发布了新的文献求助10
8秒前
Wmhuahuaood发布了新的文献求助10
9秒前
9秒前
10秒前
舒伯特完成签到 ,获得积分10
12秒前
研友_VZG7GZ应助戴岱采纳,获得10
12秒前
梦想去广州当靓仔完成签到 ,获得积分10
12秒前
13秒前
敏er好学发布了新的文献求助10
14秒前
14秒前
小张想毕业完成签到 ,获得积分10
15秒前
16秒前
zhou完成签到 ,获得积分10
17秒前
宋宋发布了新的文献求助10
17秒前
pyc076发布了新的文献求助10
18秒前
TMU完成签到,获得积分10
21秒前
21秒前
21秒前
Ao完成签到,获得积分20
22秒前
22秒前
科研通AI5应助li采纳,获得10
24秒前
24秒前
丹丹完成签到,获得积分10
24秒前
小璐sunny发布了新的文献求助10
26秒前
所所应助Poik采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538747
求助须知:如何正确求助?哪些是违规求助? 3116472
关于积分的说明 9325379
捐赠科研通 2814343
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720644
科研通“疑难数据库(出版商)”最低求助积分说明 712109