Simulation-based Optimization of Autonomous Driving Behaviors

复制 计算机科学 弹道 领域(数学) 驾驶模拟器 交通模拟 模拟 实时计算 工程类 运输工程 数学 天文 交叉口(航空) 统计 物理 纯数学
作者
Hashmatullah Sadid,Moeid Qurashi,Constantinos Antoniou
标识
DOI:10.1109/itsc55140.2022.9922604
摘要

Microscopic traffic models (MTMs) are widely used for assessing the impacts of autonomous and connected autonomous vehicles (AVs/CAVs). These models use car following (CF) and lane changing models to replicate the AV and CAV driving behaviors. Several studies attempt to replicate the accurate configuration of these behaviors (especially CF behavior) with many state-of-the-art modeling methods. However, they need to define certain parameters either based on assumptions or estimation by trajectory data from the limited field experiment of AVs and CAVs, and the impacts prediction accuracy depends on the definition of these parameters. For human-driven vehicles, these parameters mimic human drivers, whereas, for AVs and CAVs, most of these parameters could be controlled by an agent (AV and CAV). Therefore, it is possible to train AVs and CAVs to behave in a way that could potentially enhance their related impacts, e.g., traffic efficiency, emissions, and safety. Thus, this paper proposes an optimization framework that tends to find sets of optimized driving parameters for AVs and CAVs under different varying scenarios to achieve pre-defined policy targets (e.g., reducing travel time, number of conflicts). The proposed framework comprises an optimization module and a simulation environment. The differential evolution (DE) method is used within the optimization module to find the optimal values of the CF parameters. The simulation environment is a SUMO-based platform where several simulations are run under certain scenario conditions. An experimental setup is designed to apply the proposed framework under different scenarios of mixed traffic and demand situations. The findings of this study reveal that safety could be potentially improved by optimized values of CF model parameters. For each policy, where higher weight is allocated to safety, generated optimized parameters significantly improve safety as well as efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
忒寒碜完成签到,获得积分10
12秒前
16秒前
XU博士完成签到,获得积分10
18秒前
哭泣青烟完成签到 ,获得积分10
19秒前
roundtree完成签到 ,获得积分0
23秒前
等待谷南完成签到,获得积分10
26秒前
Alan完成签到 ,获得积分10
29秒前
xdc完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
依依完成签到 ,获得积分0
41秒前
MISSIW完成签到,获得积分10
42秒前
HHHAN发布了新的文献求助10
45秒前
胡胡完成签到 ,获得积分10
46秒前
火星上小土豆完成签到 ,获得积分10
56秒前
杰尼龟的鱼完成签到 ,获得积分10
1分钟前
安然完成签到 ,获得积分10
1分钟前
张希伦完成签到 ,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
1分钟前
dong完成签到 ,获得积分10
1分钟前
神说完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Aimee完成签到 ,获得积分10
1分钟前
徐彬荣完成签到,获得积分10
1分钟前
研友_8yN60L完成签到,获得积分10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
光亮的自行车完成签到 ,获得积分10
1分钟前
李东东完成签到 ,获得积分10
1分钟前
王多肉完成签到,获得积分10
1分钟前
Iiiilr完成签到 ,获得积分10
1分钟前
杨幂完成签到,获得积分10
1分钟前
1分钟前
hellokitty完成签到,获得积分10
1分钟前
1分钟前
小四发布了新的文献求助10
1分钟前
1分钟前
西瓜完成签到 ,获得积分10
1分钟前
包容的忆灵完成签到 ,获得积分10
1分钟前
高兴尔冬发布了新的文献求助10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022