Simulation-based Optimization of Autonomous Driving Behaviors

复制 计算机科学 弹道 领域(数学) 驾驶模拟器 交通模拟 模拟 实时计算 工程类 运输工程 数学 天文 交叉口(航空) 统计 物理 纯数学
作者
Hashmatullah Sadid,Moeid Qurashi,Constantinos Antoniou
标识
DOI:10.1109/itsc55140.2022.9922604
摘要

Microscopic traffic models (MTMs) are widely used for assessing the impacts of autonomous and connected autonomous vehicles (AVs/CAVs). These models use car following (CF) and lane changing models to replicate the AV and CAV driving behaviors. Several studies attempt to replicate the accurate configuration of these behaviors (especially CF behavior) with many state-of-the-art modeling methods. However, they need to define certain parameters either based on assumptions or estimation by trajectory data from the limited field experiment of AVs and CAVs, and the impacts prediction accuracy depends on the definition of these parameters. For human-driven vehicles, these parameters mimic human drivers, whereas, for AVs and CAVs, most of these parameters could be controlled by an agent (AV and CAV). Therefore, it is possible to train AVs and CAVs to behave in a way that could potentially enhance their related impacts, e.g., traffic efficiency, emissions, and safety. Thus, this paper proposes an optimization framework that tends to find sets of optimized driving parameters for AVs and CAVs under different varying scenarios to achieve pre-defined policy targets (e.g., reducing travel time, number of conflicts). The proposed framework comprises an optimization module and a simulation environment. The differential evolution (DE) method is used within the optimization module to find the optimal values of the CF parameters. The simulation environment is a SUMO-based platform where several simulations are run under certain scenario conditions. An experimental setup is designed to apply the proposed framework under different scenarios of mixed traffic and demand situations. The findings of this study reveal that safety could be potentially improved by optimized values of CF model parameters. For each policy, where higher weight is allocated to safety, generated optimized parameters significantly improve safety as well as efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Kondo发布了新的文献求助10
2秒前
小鱼完成签到 ,获得积分10
3秒前
一一应助有意义采纳,获得10
3秒前
3秒前
橘猫完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
求求你帮帮我完成签到,获得积分10
4秒前
共享精神应助珊珊采纳,获得10
4秒前
共享精神应助禹宛白采纳,获得10
4秒前
4秒前
5秒前
长情的小鸽子完成签到,获得积分10
5秒前
157295108发布了新的文献求助10
6秒前
烟花应助zxcvvbnm采纳,获得10
6秒前
6秒前
阔达如松发布了新的文献求助10
6秒前
WNL发布了新的文献求助10
6秒前
坚强水杯发布了新的文献求助60
7秒前
9秒前
善学以致用应助oue采纳,获得10
9秒前
9秒前
9秒前
HCT完成签到,获得积分10
10秒前
10秒前
10秒前
limerence发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助玥越采纳,获得10
11秒前
1chen完成签到 ,获得积分10
11秒前
12秒前
刘霆勋发布了新的文献求助10
12秒前
哪位完成签到,获得积分10
12秒前
风吹麦田应助fish采纳,获得100
13秒前
fnuew发布了新的文献求助10
13秒前
JIANGSHUI发布了新的文献求助10
14秒前
林深完成签到,获得积分10
14秒前
风清扬发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802