Simulation-based Optimization of Autonomous Driving Behaviors

复制 计算机科学 弹道 领域(数学) 驾驶模拟器 交通模拟 模拟 实时计算 工程类 运输工程 数学 天文 交叉口(航空) 统计 物理 纯数学
作者
Hashmatullah Sadid,Moeid Qurashi,Constantinos Antoniou
标识
DOI:10.1109/itsc55140.2022.9922604
摘要

Microscopic traffic models (MTMs) are widely used for assessing the impacts of autonomous and connected autonomous vehicles (AVs/CAVs). These models use car following (CF) and lane changing models to replicate the AV and CAV driving behaviors. Several studies attempt to replicate the accurate configuration of these behaviors (especially CF behavior) with many state-of-the-art modeling methods. However, they need to define certain parameters either based on assumptions or estimation by trajectory data from the limited field experiment of AVs and CAVs, and the impacts prediction accuracy depends on the definition of these parameters. For human-driven vehicles, these parameters mimic human drivers, whereas, for AVs and CAVs, most of these parameters could be controlled by an agent (AV and CAV). Therefore, it is possible to train AVs and CAVs to behave in a way that could potentially enhance their related impacts, e.g., traffic efficiency, emissions, and safety. Thus, this paper proposes an optimization framework that tends to find sets of optimized driving parameters for AVs and CAVs under different varying scenarios to achieve pre-defined policy targets (e.g., reducing travel time, number of conflicts). The proposed framework comprises an optimization module and a simulation environment. The differential evolution (DE) method is used within the optimization module to find the optimal values of the CF parameters. The simulation environment is a SUMO-based platform where several simulations are run under certain scenario conditions. An experimental setup is designed to apply the proposed framework under different scenarios of mixed traffic and demand situations. The findings of this study reveal that safety could be potentially improved by optimized values of CF model parameters. For each policy, where higher weight is allocated to safety, generated optimized parameters significantly improve safety as well as efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangxx发布了新的文献求助10
刚刚
zsyhcl完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
影子发布了新的文献求助10
1秒前
Green完成签到,获得积分10
1秒前
cc完成签到 ,获得积分10
1秒前
吃葡萄不吐完成签到,获得积分10
2秒前
2秒前
jmy1995发布了新的文献求助10
2秒前
xxy完成签到,获得积分10
3秒前
燕子发布了新的文献求助10
3秒前
山复尔尔完成签到,获得积分10
3秒前
NexusExplorer应助刻苦惜萍采纳,获得10
3秒前
zy发布了新的文献求助10
4秒前
岁月静好完成签到,获得积分10
4秒前
优雅的水晶男孩完成签到,获得积分10
4秒前
脑洞疼应助zhuzhu采纳,获得10
4秒前
4秒前
5秒前
笨笨卡卡西完成签到,获得积分10
5秒前
Chase完成签到,获得积分10
5秒前
ZRBY完成签到,获得积分10
5秒前
1112222完成签到,获得积分10
6秒前
吉他平方发布了新的文献求助10
6秒前
昵称完成签到 ,获得积分10
6秒前
mushini完成签到,获得积分10
6秒前
7秒前
桔梗完成签到 ,获得积分10
7秒前
7秒前
爱喝蜜桃乌龙完成签到,获得积分10
7秒前
英姑应助蔡博颖采纳,获得10
7秒前
爆炸发布了新的文献求助10
7秒前
8秒前
9秒前
半凡发布了新的文献求助30
9秒前
Akim应助只爱LJT采纳,获得10
9秒前
A阿澍完成签到,获得积分10
9秒前
lly2025完成签到,获得积分10
9秒前
ZJPPPP完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005