Simulation-based Optimization of Autonomous Driving Behaviors

复制 计算机科学 弹道 领域(数学) 驾驶模拟器 交通模拟 模拟 实时计算 工程类 运输工程 数学 天文 交叉口(航空) 统计 物理 纯数学
作者
Hashmatullah Sadid,Moeid Qurashi,Constantinos Antoniou
标识
DOI:10.1109/itsc55140.2022.9922604
摘要

Microscopic traffic models (MTMs) are widely used for assessing the impacts of autonomous and connected autonomous vehicles (AVs/CAVs). These models use car following (CF) and lane changing models to replicate the AV and CAV driving behaviors. Several studies attempt to replicate the accurate configuration of these behaviors (especially CF behavior) with many state-of-the-art modeling methods. However, they need to define certain parameters either based on assumptions or estimation by trajectory data from the limited field experiment of AVs and CAVs, and the impacts prediction accuracy depends on the definition of these parameters. For human-driven vehicles, these parameters mimic human drivers, whereas, for AVs and CAVs, most of these parameters could be controlled by an agent (AV and CAV). Therefore, it is possible to train AVs and CAVs to behave in a way that could potentially enhance their related impacts, e.g., traffic efficiency, emissions, and safety. Thus, this paper proposes an optimization framework that tends to find sets of optimized driving parameters for AVs and CAVs under different varying scenarios to achieve pre-defined policy targets (e.g., reducing travel time, number of conflicts). The proposed framework comprises an optimization module and a simulation environment. The differential evolution (DE) method is used within the optimization module to find the optimal values of the CF parameters. The simulation environment is a SUMO-based platform where several simulations are run under certain scenario conditions. An experimental setup is designed to apply the proposed framework under different scenarios of mixed traffic and demand situations. The findings of this study reveal that safety could be potentially improved by optimized values of CF model parameters. For each policy, where higher weight is allocated to safety, generated optimized parameters significantly improve safety as well as efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
牢大完成签到 ,获得积分10
1秒前
mrmr发布了新的文献求助10
1秒前
1秒前
1秒前
慕青应助Triangle1116采纳,获得10
2秒前
3秒前
3秒前
浮游应助无心的土豆采纳,获得10
4秒前
研友_滕谷完成签到,获得积分20
5秒前
郝丽娜发布了新的文献求助10
5秒前
crisp发布了新的文献求助10
6秒前
simiger完成签到,获得积分10
6秒前
研友_滕谷发布了新的文献求助10
7秒前
歇菜完成签到,获得积分10
8秒前
Bi8bo发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
眼睛大书兰完成签到,获得积分20
10秒前
郝丽娜完成签到,获得积分20
15秒前
Triangle1116发布了新的文献求助10
15秒前
15秒前
16秒前
漫若浮光完成签到,获得积分10
17秒前
1515完成签到 ,获得积分10
18秒前
20秒前
领导范儿应助从嘉采纳,获得10
20秒前
Lilith发布了新的文献求助10
21秒前
24秒前
威武荔枝发布了新的文献求助10
26秒前
狂野的明杰完成签到,获得积分10
26秒前
无花果应助Xiu采纳,获得10
28秒前
婧婧完成签到 ,获得积分10
28秒前
共享精神应助crisp采纳,获得10
29秒前
Triangle1116完成签到 ,获得积分10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499073
求助须知:如何正确求助?哪些是违规求助? 4596077
关于积分的说明 14452115
捐赠科研通 4529187
什么是DOI,文献DOI怎么找? 2481836
邀请新用户注册赠送积分活动 1465860
关于科研通互助平台的介绍 1438802