亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simulation-based Optimization of Autonomous Driving Behaviors

复制 计算机科学 弹道 领域(数学) 驾驶模拟器 交通模拟 模拟 实时计算 工程类 运输工程 数学 天文 交叉口(航空) 统计 物理 纯数学
作者
Hashmatullah Sadid,Moeid Qurashi,Constantinos Antoniou
标识
DOI:10.1109/itsc55140.2022.9922604
摘要

Microscopic traffic models (MTMs) are widely used for assessing the impacts of autonomous and connected autonomous vehicles (AVs/CAVs). These models use car following (CF) and lane changing models to replicate the AV and CAV driving behaviors. Several studies attempt to replicate the accurate configuration of these behaviors (especially CF behavior) with many state-of-the-art modeling methods. However, they need to define certain parameters either based on assumptions or estimation by trajectory data from the limited field experiment of AVs and CAVs, and the impacts prediction accuracy depends on the definition of these parameters. For human-driven vehicles, these parameters mimic human drivers, whereas, for AVs and CAVs, most of these parameters could be controlled by an agent (AV and CAV). Therefore, it is possible to train AVs and CAVs to behave in a way that could potentially enhance their related impacts, e.g., traffic efficiency, emissions, and safety. Thus, this paper proposes an optimization framework that tends to find sets of optimized driving parameters for AVs and CAVs under different varying scenarios to achieve pre-defined policy targets (e.g., reducing travel time, number of conflicts). The proposed framework comprises an optimization module and a simulation environment. The differential evolution (DE) method is used within the optimization module to find the optimal values of the CF parameters. The simulation environment is a SUMO-based platform where several simulations are run under certain scenario conditions. An experimental setup is designed to apply the proposed framework under different scenarios of mixed traffic and demand situations. The findings of this study reveal that safety could be potentially improved by optimized values of CF model parameters. For each policy, where higher weight is allocated to safety, generated optimized parameters significantly improve safety as well as efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助lwp采纳,获得10
16秒前
馆长应助科研通管家采纳,获得30
28秒前
李爱国应助科研通管家采纳,获得10
28秒前
lwp完成签到,获得积分10
55秒前
1分钟前
jimmy_bytheway完成签到,获得积分0
1分钟前
1分钟前
1分钟前
外向的妍完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助Hazel采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
西北发布了新的文献求助10
2分钟前
西北完成签到,获得积分10
2分钟前
XiaoLiu应助科研通管家采纳,获得20
2分钟前
2分钟前
2分钟前
Hazel发布了新的文献求助10
2分钟前
武昂王发布了新的文献求助10
2分钟前
3分钟前
所所应助yayah采纳,获得10
3分钟前
alaa发布了新的文献求助40
3分钟前
3分钟前
4分钟前
陈晶完成签到 ,获得积分10
4分钟前
alaa完成签到,获得积分20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
搜集达人应助平常映雁采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
传奇3应助柏风华采纳,获得10
5分钟前
Lucas应助Hazel采纳,获得30
5分钟前
矢思然完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
柏风华发布了新的文献求助10
5分钟前
Siren发布了新的文献求助30
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595381
求助须知:如何正确求助?哪些是违规求助? 4007777
关于积分的说明 12408512
捐赠科研通 3686375
什么是DOI,文献DOI怎么找? 2031815
邀请新用户注册赠送积分活动 1065060
科研通“疑难数据库(出版商)”最低求助积分说明 950410