Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net

病变 医学 放射科 体素 Sørensen–骰子系数 核医学 分割 人工智能 计算机科学 病理 图像分割
作者
Adi Szeskin,Shalom Rochman,Snir Weiss,Richard J. Lederman,Jacob Sosna,Leo Joskowicz
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102675-102675 被引量:10
标识
DOI:10.1016/j.media.2022.102675
摘要

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戴冬梅发布了新的文献求助10
刚刚
彭泽阳发布了新的文献求助10
刚刚
刘智舰完成签到,获得积分20
刚刚
1秒前
KIKI完成签到,获得积分20
1秒前
1秒前
1秒前
再见不难完成签到,获得积分10
1秒前
1秒前
斯文败类应助dou采纳,获得10
1秒前
金金完成签到 ,获得积分10
2秒前
合适的嵩完成签到,获得积分20
2秒前
Jiang完成签到,获得积分20
2秒前
聪慧夜柳发布了新的文献求助10
3秒前
4秒前
张凡完成签到,获得积分10
4秒前
传奇3应助夏目采纳,获得10
4秒前
yyf1998发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
彬彬发布了新的文献求助10
5秒前
科研通AI6应助lyw采纳,获得10
5秒前
雷仔完成签到,获得积分10
5秒前
Jiang发布了新的文献求助10
5秒前
小老鼠完成签到 ,获得积分10
6秒前
加氢脱氧发布了新的文献求助10
6秒前
una完成签到,获得积分10
7秒前
huhdcid发布了新的文献求助10
7秒前
7秒前
7秒前
Mingyue123完成签到 ,获得积分10
7秒前
风吹麦田应助C_采纳,获得50
8秒前
Evan666发布了新的文献求助10
9秒前
9秒前
丫丫发布了新的文献求助10
9秒前
温莹发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233