Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net

病变 医学 放射科 体素 Sørensen–骰子系数 核医学 分割 人工智能 计算机科学 病理 图像分割
作者
Adi Szeskin,Shalom Rochman,Snir Weiss,Richard J. Lederman,Jacob Sosna,Leo Joskowicz
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102675-102675 被引量:10
标识
DOI:10.1016/j.media.2022.102675
摘要

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ad钙发布了新的文献求助10
1秒前
英俊的铭应助开心的渊思采纳,获得10
2秒前
revo完成签到,获得积分10
2秒前
hh发布了新的文献求助10
2秒前
ERIS完成签到,获得积分10
3秒前
3秒前
英姑应助YZQ采纳,获得10
3秒前
汉堡包应助第七个星球采纳,获得10
3秒前
逆蝶发布了新的文献求助10
5秒前
5秒前
光亮语梦完成签到 ,获得积分10
6秒前
科研通AI6应助ERIS采纳,获得10
6秒前
Shaw发布了新的文献求助10
7秒前
7秒前
斯文败类应助DDD采纳,获得10
8秒前
青瓦完成签到 ,获得积分10
9秒前
果子发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
peanuttt完成签到,获得积分10
12秒前
12秒前
悬铃木发布了新的文献求助10
13秒前
汉堡包应助22222采纳,获得10
13秒前
13秒前
聪明的寒梅完成签到 ,获得积分10
13秒前
汉堡包应助哭泣的梦琪采纳,获得10
13秒前
CipherSage应助BW打工仔采纳,获得10
14秒前
14秒前
Shaw完成签到,获得积分10
14秒前
科研通AI6应助钙离子采纳,获得10
14秒前
14秒前
peanuttt发布了新的文献求助10
14秒前
hh完成签到,获得积分10
15秒前
豆子发布了新的文献求助10
15秒前
15秒前
16秒前
CodeCraft应助cc采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589068
求助须知:如何正确求助?哪些是违规求助? 4672334
关于积分的说明 14790349
捐赠科研通 4627486
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500706
关于科研通互助平台的介绍 1468396