已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net

病变 医学 放射科 体素 Sørensen–骰子系数 核医学 分割 人工智能 计算机科学 病理 图像分割
作者
Adi Szeskin,Shalom Rochman,Snir Weiss,Richard J. Lederman,Jacob Sosna,Leo Joskowicz
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102675-102675 被引量:10
标识
DOI:10.1016/j.media.2022.102675
摘要

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榕小蜂完成签到 ,获得积分10
刚刚
冷酷飞飞完成签到 ,获得积分10
刚刚
jyy完成签到,获得积分10
1秒前
咩咩完成签到 ,获得积分10
1秒前
小爬沟完成签到,获得积分10
2秒前
2秒前
3秒前
Setlla完成签到 ,获得积分10
4秒前
小蘑菇应助犹豫的雁卉采纳,获得10
4秒前
肖的花园完成签到 ,获得积分10
5秒前
6秒前
7秒前
谢大喵发布了新的文献求助10
7秒前
今后应助幸运幸福采纳,获得10
8秒前
动听衬衫发布了新的文献求助10
9秒前
Nefelibata完成签到,获得积分10
10秒前
wangyue完成签到 ,获得积分10
11秒前
Angenstern完成签到 ,获得积分10
11秒前
tong童完成签到 ,获得积分10
13秒前
Fiona发布了新的文献求助10
13秒前
科研通AI5应助动听衬衫采纳,获得10
13秒前
FashionBoy应助门前海棠依旧采纳,获得10
13秒前
慕青应助动听衬衫采纳,获得10
13秒前
lizhongyu发布了新的文献求助10
15秒前
ANLAA完成签到,获得积分20
15秒前
yong完成签到 ,获得积分10
16秒前
生动的煎蛋完成签到 ,获得积分10
18秒前
Limerencia完成签到,获得积分10
18秒前
酷波er应助刘雄丽采纳,获得10
21秒前
宇宇完成签到 ,获得积分10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
豆子应助科研通管家采纳,获得30
22秒前
大模型应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
感动手链完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253082
求助须知:如何正确求助?哪些是违规求助? 4416579
关于积分的说明 13750145
捐赠科研通 4288834
什么是DOI,文献DOI怎么找? 2353101
邀请新用户注册赠送积分活动 1349865
关于科研通互助平台的介绍 1309581