Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net

病变 医学 放射科 体素 Sørensen–骰子系数 核医学 分割 人工智能 计算机科学 病理 图像分割
作者
Adi Szeskin,Shalom Rochman,Snir Weiss,Richard J. Lederman,Jacob Sosna,Leo Joskowicz
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102675-102675 被引量:10
标识
DOI:10.1016/j.media.2022.102675
摘要

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘莲完成签到,获得积分10
刚刚
美好斓发布了新的文献求助10
1秒前
所所应助ttt采纳,获得10
1秒前
raining发布了新的文献求助10
1秒前
小二郎应助凶狠的白山采纳,获得30
1秒前
Lemon发布了新的文献求助10
2秒前
刘莲发布了新的文献求助10
3秒前
3秒前
3秒前
英姑应助思川采纳,获得30
3秒前
poijegioa完成签到,获得积分10
4秒前
4秒前
5秒前
幼汁汁鬼鬼完成签到,获得积分10
7秒前
8秒前
8秒前
快乐的幼丝完成签到 ,获得积分10
9秒前
10秒前
棠棠发布了新的文献求助10
11秒前
星星曜星星完成签到,获得积分10
11秒前
执着的海发布了新的文献求助20
11秒前
12秒前
泥豪泥嚎完成签到 ,获得积分10
12秒前
years完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
乐乐应助鱿鱼起司采纳,获得10
13秒前
loverdose完成签到,获得积分10
13秒前
桐桐应助鱿鱼起司采纳,获得10
13秒前
ding应助鱿鱼起司采纳,获得10
13秒前
zy发布了新的文献求助10
14秒前
熬夜波比应助鱿鱼起司采纳,获得10
14秒前
Hello应助鱿鱼起司采纳,获得10
14秒前
我要发文章完成签到,获得积分10
15秒前
微微发布了新的文献求助10
15秒前
linruohong6发布了新的文献求助10
15秒前
16秒前
16秒前
李健的小迷弟应助years采纳,获得10
17秒前
18秒前
在水一方应助李李李采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693585
求助须知:如何正确求助?哪些是违规求助? 5093488
关于积分的说明 15212074
捐赠科研通 4850504
什么是DOI,文献DOI怎么找? 2601783
邀请新用户注册赠送积分活动 1553630
关于科研通互助平台的介绍 1511597