Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net

病变 医学 放射科 体素 Sørensen–骰子系数 核医学 分割 人工智能 计算机科学 病理 图像分割
作者
Adi Szeskin,Shalom Rochman,Snir Weiss,Richard J. Lederman,Jacob Sosna,Leo Joskowicz
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102675-102675 被引量:10
标识
DOI:10.1016/j.media.2022.102675
摘要

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
hay发布了新的文献求助10
1秒前
iknj发布了新的文献求助10
2秒前
shun完成签到,获得积分10
3秒前
山前明月发布了新的文献求助10
3秒前
CipherSage应助顺利凌寒采纳,获得10
4秒前
亦犹未进完成签到,获得积分10
5秒前
5秒前
水水的完成签到 ,获得积分10
6秒前
诚心的丹秋完成签到,获得积分10
7秒前
Nivis完成签到 ,获得积分10
8秒前
rui完成签到,获得积分10
9秒前
彭于晏应助Yuanyuan采纳,获得10
10秒前
橙星星完成签到,获得积分20
10秒前
priss111发布了新的文献求助10
10秒前
pine完成签到 ,获得积分10
11秒前
12秒前
山前明月完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
17秒前
OvO发布了新的文献求助10
19秒前
19秒前
孙浚涵发布了新的文献求助10
20秒前
SciGPT应助魂断红颜采纳,获得10
20秒前
年轻的醉冬完成签到 ,获得积分10
21秒前
21秒前
22秒前
丘比特应助唠叨的白曼采纳,获得10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
24秒前
hatchio完成签到,获得积分10
24秒前
cc完成签到,获得积分10
24秒前
Petrichor发布了新的文献求助10
26秒前
Hhhhhhhhhhh完成签到,获得积分10
26秒前
依紫发布了新的文献求助10
26秒前
如意的冰双完成签到 ,获得积分10
27秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365