Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net

病变 医学 放射科 体素 Sørensen–骰子系数 核医学 分割 人工智能 计算机科学 病理 图像分割
作者
Adi Szeskin,Shalom Rochman,Snir Weiss,Richard J. Lederman,Jacob Sosna,Leo Joskowicz
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102675-102675 被引量:10
标识
DOI:10.1016/j.media.2022.102675
摘要

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiejuan完成签到,获得积分10
1秒前
宫冷雁完成签到,获得积分10
2秒前
lizzie完成签到,获得积分10
2秒前
qss8807完成签到,获得积分10
2秒前
2秒前
小_n完成签到,获得积分10
2秒前
开心晓凡完成签到,获得积分10
3秒前
kaii完成签到,获得积分10
3秒前
小二郎应助SUN采纳,获得10
3秒前
Daaz完成签到,获得积分10
4秒前
super发布了新的文献求助10
4秒前
昏睡的蟠桃应助不敢装睡采纳,获得200
4秒前
4秒前
成就的凡松完成签到,获得积分10
5秒前
5秒前
李明完成签到,获得积分10
5秒前
弱于一般人类完成签到,获得积分10
5秒前
活在当下完成签到,获得积分10
5秒前
要减肥曼容完成签到,获得积分10
6秒前
王彤彤完成签到 ,获得积分10
6秒前
我爱学习呢完成签到,获得积分10
6秒前
7秒前
安心完成签到 ,获得积分10
7秒前
坚定的珊珊完成签到 ,获得积分10
7秒前
葡萄又酸又甜完成签到 ,获得积分10
7秒前
明天见完成签到,获得积分10
8秒前
周周完成签到,获得积分10
8秒前
七岁完成签到,获得积分10
8秒前
听话的尔竹完成签到 ,获得积分10
8秒前
坛子完成签到,获得积分10
8秒前
一粟的粉r完成签到 ,获得积分10
9秒前
思源应助清欢采纳,获得10
9秒前
lyu完成签到,获得积分10
10秒前
11秒前
yexing完成签到,获得积分10
12秒前
xm完成签到,获得积分10
12秒前
乘风完成签到,获得积分10
12秒前
qwer完成签到 ,获得积分10
12秒前
威威完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349