亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net

病变 医学 放射科 体素 Sørensen–骰子系数 核医学 分割 人工智能 计算机科学 病理 图像分割
作者
Adi Szeskin,Shalom Rochman,Snir Weiss,Richard J. Lederman,Jacob Sosna,Leo Joskowicz
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102675-102675 被引量:10
标识
DOI:10.1016/j.media.2022.102675
摘要

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃鱼完成签到 ,获得积分10
12秒前
科研通AI5应助LynSharonRose采纳,获得30
14秒前
testmanfuxk完成签到,获得积分10
15秒前
21秒前
WanchengHu发布了新的文献求助10
25秒前
wynne313完成签到 ,获得积分10
31秒前
32秒前
shaylie完成签到 ,获得积分10
35秒前
35秒前
oscar完成签到,获得积分10
37秒前
LynSharonRose发布了新的文献求助30
37秒前
cwy发布了新的文献求助10
40秒前
小黄完成签到 ,获得积分10
41秒前
及禾应助LynSharonRose采纳,获得20
51秒前
WanchengHu完成签到,获得积分10
57秒前
小马甲应助cwy采纳,获得10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
1分钟前
LynSharonRose完成签到,获得积分10
1分钟前
hsy完成签到,获得积分10
1分钟前
2分钟前
善学以致用应助LULU采纳,获得10
2分钟前
2分钟前
月亮发布了新的文献求助10
2分钟前
科研通AI6应助月亮采纳,获得10
2分钟前
月亮完成签到,获得积分10
2分钟前
星辰大海应助ranj采纳,获得10
3分钟前
精明凡双应助科研通管家采纳,获得10
3分钟前
3分钟前
小二郎应助幽默安珊采纳,获得10
3分钟前
ww发布了新的文献求助10
3分钟前
Unicorn完成签到,获得积分10
3分钟前
3分钟前
YYJ完成签到 ,获得积分10
3分钟前
幽默安珊发布了新的文献求助10
3分钟前
3分钟前
LULU发布了新的文献求助10
3分钟前
Jasper应助shen采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626005
求助须知:如何正确求助?哪些是违规求助? 4025048
关于积分的说明 12458300
捐赠科研通 3710193
什么是DOI,文献DOI怎么找? 2046504
邀请新用户注册赠送积分活动 1078457
科研通“疑难数据库(出版商)”最低求助积分说明 960922