Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net

病变 医学 放射科 体素 Sørensen–骰子系数 核医学 分割 人工智能 计算机科学 病理 图像分割
作者
Adi Szeskin,Shalom Rochman,Snir Weiss,Richard J. Lederman,Jacob Sosna,Leo Joskowicz
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102675-102675 被引量:10
标识
DOI:10.1016/j.media.2022.102675
摘要

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
清秀灵薇发布了新的文献求助10
2秒前
4秒前
6秒前
7秒前
7秒前
8秒前
Lignin发布了新的文献求助10
8秒前
9秒前
9秒前
酷炫的凤妖完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
11秒前
12秒前
Yepp发布了新的文献求助10
13秒前
研友_8KKmR8发布了新的文献求助10
13秒前
13秒前
15秒前
sjyplus1发布了新的文献求助10
17秒前
18秒前
一路狂奔等不了完成签到 ,获得积分10
18秒前
Lignin发布了新的文献求助10
18秒前
Akim应助能干的吐司采纳,获得10
18秒前
MrRen完成签到,获得积分10
19秒前
Wd完成签到,获得积分20
20秒前
Menand完成签到,获得积分10
21秒前
23秒前
23秒前
FashionBoy应助Lignin采纳,获得10
24秒前
优雅梨愁发布了新的文献求助10
24秒前
星辰大海应助Lignin采纳,获得10
24秒前
大个应助Lignin采纳,获得10
24秒前
完美世界应助Lignin采纳,获得10
24秒前
隐形曼青应助Lignin采纳,获得10
24秒前
酷波er应助sjyplus1采纳,获得10
24秒前
赘婿应助Lignin采纳,获得10
24秒前
壮观听白完成签到,获得积分10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640