Liver lesion changes analysis in longitudinal CECT scans by simultaneous deep learning voxel classification with SimU-Net

病变 医学 放射科 体素 Sørensen–骰子系数 核医学 分割 人工智能 计算机科学 病理 图像分割
作者
Adi Szeskin,Shalom Rochman,Snir Weiss,Richard J. Lederman,Jacob Sosna,Leo Joskowicz
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102675-102675 被引量:10
标识
DOI:10.1016/j.media.2022.102675
摘要

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
过时的砖头完成签到 ,获得积分10
1秒前
1秒前
我是老大应助义气大米采纳,获得10
2秒前
予诚完成签到 ,获得积分10
2秒前
外向蚂蚁发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助凶狠的璎采纳,获得10
4秒前
Z_jx完成签到,获得积分10
4秒前
苏恩完成签到,获得积分10
4秒前
真实的火车完成签到,获得积分10
4秒前
math-naive完成签到,获得积分10
5秒前
111完成签到 ,获得积分10
6秒前
考槃在涧完成签到 ,获得积分10
6秒前
跳跃的访琴完成签到 ,获得积分10
6秒前
科研牛马完成签到 ,获得积分10
6秒前
MM完成签到,获得积分10
9秒前
Arrhenius完成签到,获得积分10
9秒前
10秒前
神志不清的衾完成签到,获得积分10
12秒前
活泼的大船完成签到,获得积分10
12秒前
Pan完成签到 ,获得积分10
12秒前
摇摇摇不匀完成签到 ,获得积分10
12秒前
Zhaowx完成签到,获得积分10
14秒前
藏识完成签到,获得积分10
14秒前
要奋斗的小番茄完成签到,获得积分10
15秒前
16秒前
自由人完成签到,获得积分10
17秒前
17秒前
19秒前
19秒前
感动天荷完成签到,获得积分10
21秒前
Autaro完成签到,获得积分10
21秒前
22秒前
量子星尘发布了新的文献求助150
22秒前
尛森发布了新的文献求助10
23秒前
23秒前
abjz完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418754
求助须知:如何正确求助?哪些是违规求助? 4534384
关于积分的说明 14143702
捐赠科研通 4450621
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433030
关于科研通互助平台的介绍 1410467