亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[Automatic identification algorithm of meniscus tear based on radiomics of knee MRI].

接收机工作特性 医学 组内相关 弯月面 磁共振成像 感兴趣区域 内侧半月板 关节镜检查 核医学 矢状面 算法 人工智能 放射科 口腔正畸科 计算机科学 数学 骨关节炎 几何学 病理 临床心理学 替代医学 入射(几何) 内科学 心理测量学
作者
Yuanzhe Li,Qingquan Lai,Jing Huang,Weiyi Hu,Yi Wang,Kaibin Fang
出处
期刊:PubMed 卷期号:36 (11): 1395-1399
标识
DOI:10.7507/1002-1892.202206016
摘要

To establish a classification model based on knee MRI radiomics, realize automatic identification of meniscus tear, and provide reference for accurate diagnosis of meniscus injury.A total of 228 patients (246 knees) with meniscus injury who were admitted between July 2018 and March 2021 were selected as the research objects. There were 146 males and 82 females; the age ranged from 9 to 76 years, with a median age of 53 years. There were 210 cases of meniscus injury in one knee and 18 cases in both knees. All the patients were confirmed by arthroscopy, among which 117 knees with meniscus tear and 129 knees with meniscus non-tear injury. The proton density weighted-spectral attenuated inversion recovery (PDW-SPAIR) sequence images of sagittal MRI were collected, and two doctors performed radiomics studies. The 246 knees were randomly divided into training group and testing group according to the ratio of 7∶3. First, ITK-SNAP3.6.0 software was used to extract the region of interest (ROI) of the meniscus and radiomic features. After retaining the radiomic features with intraclass correlation coefficient (ICC)>0.8, the max-relevance and min-redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) were used for filtering the features to establish an automatic identification model of meniscus tear. The receiver operator characteristic curve (ROC) and the corresponding area under the ROC curve (AUC) was obtained; the model performance was comprehensively evaluated by calculating the accuracy, sensitivity, and specificity.A total of 1 316-dimensional radiomic features were extracted from the meniscus ROI, and the ICC within the group and ICC between the groups of the 981-dimensional radiomic features were both greater than 0.80. The redundant information in the 981-dimensional radiomic features was eliminated by mRMR, and the 20-dimensional radiomic features were retained. The optimal feature subset was further selected by LASSO, and 8-dimensional radiomic features were selected. The average ICC within the group and the average ICC between the groups were 0.942 and 0.920, respectively. The AUC of the training group was 0.889±0.036 [95% CI (0.845, 0.942), P<0.001], and the accuracy, sensitivity, and specificity were 0.873, 0.869, and 0.842, respectively; the AUC of the testing group was 0.876±0.036 [95% CI (0.875, 0.984), P<0.001], and the accuracy, sensitivity, and specificity were 0.862, 0.851, and 0.845, respectively.The model established by the radiomics method has good automatic identification performance of meniscus tear.基于膝关节MRI影像组学建立鉴别模型,以实现半月板撕裂自动鉴别,为精确诊断半月板损伤提供参考。.以2018年7月—2021年3月收治的228例(246膝)半月板损伤患者为研究对象。男146例,女82例;年龄9~76岁,中位年龄53岁。其中,单膝210例,双膝18例。患者均经关节镜检查明确诊断,其中撕裂半月板117膝、非撕裂半月板129膝。收集患者MRI矢状位质子密度加权频率衰减翻转恢复(proton density weighted-spectral attenuated inversion recovery,PDW-SPAIR)序列,由2名医生进行影像组学研究。将246膝按照7∶3比例随机分成训练组及测试组。首先,使用ITK-SNAP3.6.0软件提取半月板感兴趣区域(region of interest,ROI),进行影像组学特征提取。保留组内和组间相关系数(intraclass correlation coefficient,ICC)>0.8的特征后,使用最大相关-最小冗余(max-relevance and min-redundancy,mRMR)和套索算法(least absolute shrinkage and selection operator,LASSO)进行筛选,建立半月板撕裂自动鉴别模型,绘制受试者工作特征曲线(receiver operator characteristic curve,ROC),并获取相对应曲线下面积(area under ROC curve,AUC);通过计算准确率、灵敏度、特异度对模型性能进行综合评估。.基于MRI矢状位PDW-SPAIR序列,于半月板ROI共提取1 316维影像组学特征,其中981维组内和组间ICC>0.80。通过mRMR将981维影像组学特征中的冗余信息进行消除,保留20维。进一步通过LASSO选择最优特征子集、确定选用8维最显著影像组学特征,平均组内、组间ICC分别为0.942、0.920。训练组AUC为0.889±0.036 [95% CI(0.845,0.942), P<0.001],准确率、灵敏度、特异度分别为0.873、0.869、0.842;测试组AUC为0.876±0.036 [95% CI(0.875,0.984), P<0.001],准确率、敏感度、特异度分别为0.862、0.851、0.845。.采用影像组学方法建立的鉴别模型具有良好的半月板撕裂自动鉴别性能。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的梦露完成签到 ,获得积分10
2秒前
xx发布了新的文献求助10
2秒前
江任意西完成签到 ,获得积分10
17秒前
lensray完成签到,获得积分10
44秒前
我是老大应助科研通管家采纳,获得20
44秒前
FashionBoy应助科研通管家采纳,获得10
45秒前
科目三应助科研通管家采纳,获得10
45秒前
学术小白完成签到,获得积分10
48秒前
深情安青应助Forizix采纳,获得10
59秒前
1分钟前
Forizix完成签到,获得积分10
1分钟前
Forizix发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
乐生发布了新的文献求助50
1分钟前
CodeCraft应助泡面小猪采纳,获得10
1分钟前
科研通AI2S应助活力鸿采纳,获得10
1分钟前
我是老大应助乐生采纳,获得10
1分钟前
1分钟前
百里盼山发布了新的文献求助10
2分钟前
百里盼山完成签到,获得积分20
2分钟前
执着夏山完成签到,获得积分10
2分钟前
Jonas完成签到,获得积分10
2分钟前
2分钟前
泡面小猪发布了新的文献求助10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
3分钟前
foxmail.com完成签到,获得积分10
3分钟前
foxmail.com发布了新的文献求助10
3分钟前
3分钟前
乐生发布了新的文献求助10
3分钟前
乐生完成签到,获得积分10
3分钟前
温暖的盼山应助乐生采纳,获得10
3分钟前
ww发布了新的文献求助20
4分钟前
5分钟前
医路通行发布了新的文献求助20
5分钟前
Esperanza完成签到,获得积分10
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299638
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989