[Automatic identification algorithm of meniscus tear based on radiomics of knee MRI].

接收机工作特性 医学 组内相关 弯月面 磁共振成像 感兴趣区域 内侧半月板 关节镜检查 核医学 矢状面 算法 人工智能 放射科 口腔正畸科 计算机科学 数学 骨关节炎 几何学 病理 临床心理学 入射(几何) 内科学 心理测量学 替代医学
作者
Yuanzhe Li,Qingquan Lai,Jing Huang,Weiyi Hu,Yi Wang,Kaibin Fang
出处
期刊:PubMed 卷期号:36 (11): 1395-1399
标识
DOI:10.7507/1002-1892.202206016
摘要

To establish a classification model based on knee MRI radiomics, realize automatic identification of meniscus tear, and provide reference for accurate diagnosis of meniscus injury.A total of 228 patients (246 knees) with meniscus injury who were admitted between July 2018 and March 2021 were selected as the research objects. There were 146 males and 82 females; the age ranged from 9 to 76 years, with a median age of 53 years. There were 210 cases of meniscus injury in one knee and 18 cases in both knees. All the patients were confirmed by arthroscopy, among which 117 knees with meniscus tear and 129 knees with meniscus non-tear injury. The proton density weighted-spectral attenuated inversion recovery (PDW-SPAIR) sequence images of sagittal MRI were collected, and two doctors performed radiomics studies. The 246 knees were randomly divided into training group and testing group according to the ratio of 7∶3. First, ITK-SNAP3.6.0 software was used to extract the region of interest (ROI) of the meniscus and radiomic features. After retaining the radiomic features with intraclass correlation coefficient (ICC)>0.8, the max-relevance and min-redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) were used for filtering the features to establish an automatic identification model of meniscus tear. The receiver operator characteristic curve (ROC) and the corresponding area under the ROC curve (AUC) was obtained; the model performance was comprehensively evaluated by calculating the accuracy, sensitivity, and specificity.A total of 1 316-dimensional radiomic features were extracted from the meniscus ROI, and the ICC within the group and ICC between the groups of the 981-dimensional radiomic features were both greater than 0.80. The redundant information in the 981-dimensional radiomic features was eliminated by mRMR, and the 20-dimensional radiomic features were retained. The optimal feature subset was further selected by LASSO, and 8-dimensional radiomic features were selected. The average ICC within the group and the average ICC between the groups were 0.942 and 0.920, respectively. The AUC of the training group was 0.889±0.036 [95% CI (0.845, 0.942), P<0.001], and the accuracy, sensitivity, and specificity were 0.873, 0.869, and 0.842, respectively; the AUC of the testing group was 0.876±0.036 [95% CI (0.875, 0.984), P<0.001], and the accuracy, sensitivity, and specificity were 0.862, 0.851, and 0.845, respectively.The model established by the radiomics method has good automatic identification performance of meniscus tear.基于膝关节MRI影像组学建立鉴别模型,以实现半月板撕裂自动鉴别,为精确诊断半月板损伤提供参考。.以2018年7月—2021年3月收治的228例(246膝)半月板损伤患者为研究对象。男146例,女82例;年龄9~76岁,中位年龄53岁。其中,单膝210例,双膝18例。患者均经关节镜检查明确诊断,其中撕裂半月板117膝、非撕裂半月板129膝。收集患者MRI矢状位质子密度加权频率衰减翻转恢复(proton density weighted-spectral attenuated inversion recovery,PDW-SPAIR)序列,由2名医生进行影像组学研究。将246膝按照7∶3比例随机分成训练组及测试组。首先,使用ITK-SNAP3.6.0软件提取半月板感兴趣区域(region of interest,ROI),进行影像组学特征提取。保留组内和组间相关系数(intraclass correlation coefficient,ICC)>0.8的特征后,使用最大相关-最小冗余(max-relevance and min-redundancy,mRMR)和套索算法(least absolute shrinkage and selection operator,LASSO)进行筛选,建立半月板撕裂自动鉴别模型,绘制受试者工作特征曲线(receiver operator characteristic curve,ROC),并获取相对应曲线下面积(area under ROC curve,AUC);通过计算准确率、灵敏度、特异度对模型性能进行综合评估。.基于MRI矢状位PDW-SPAIR序列,于半月板ROI共提取1 316维影像组学特征,其中981维组内和组间ICC>0.80。通过mRMR将981维影像组学特征中的冗余信息进行消除,保留20维。进一步通过LASSO选择最优特征子集、确定选用8维最显著影像组学特征,平均组内、组间ICC分别为0.942、0.920。训练组AUC为0.889±0.036 [95% CI(0.845,0.942), P<0.001],准确率、灵敏度、特异度分别为0.873、0.869、0.842;测试组AUC为0.876±0.036 [95% CI(0.875,0.984), P<0.001],准确率、敏感度、特异度分别为0.862、0.851、0.845。.采用影像组学方法建立的鉴别模型具有良好的半月板撕裂自动鉴别性能。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
1秒前
无名发布了新的文献求助10
1秒前
cc发布了新的文献求助10
2秒前
踏实三问完成签到,获得积分10
2秒前
李爱国应助minsu采纳,获得10
2秒前
与共发布了新的文献求助10
3秒前
jjj完成签到,获得积分10
3秒前
3秒前
观南完成签到,获得积分10
3秒前
小智完成签到,获得积分20
3秒前
Pony完成签到,获得积分10
5秒前
花花猪1989发布了新的文献求助10
5秒前
5秒前
雨醉东风完成签到,获得积分10
5秒前
JamesPei应助猪猪猪采纳,获得10
6秒前
6秒前
6秒前
melosy完成签到,获得积分10
6秒前
海派甜心完成签到,获得积分10
6秒前
JamesPei应助牛马采纳,获得30
6秒前
坦率白竹完成签到,获得积分10
6秒前
7秒前
灵巧的孤容完成签到,获得积分10
7秒前
sunishope完成签到 ,获得积分10
8秒前
小苹果完成签到,获得积分10
8秒前
科研白白完成签到 ,获得积分10
8秒前
舒服的凡之完成签到,获得积分10
8秒前
小橘子完成签到,获得积分10
8秒前
心旷神怡发布了新的文献求助10
9秒前
悦耳冬萱完成签到 ,获得积分10
10秒前
as完成签到,获得积分10
10秒前
Hao应助燕儿采纳,获得50
10秒前
11秒前
香蕉觅云应助海阔天空采纳,获得10
11秒前
张旭卓完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
拼搏的冰蝶完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614354
求助须知:如何正确求助?哪些是违规求助? 4018548
关于积分的说明 12439030
捐赠科研通 3701353
什么是DOI,文献DOI怎么找? 2041161
邀请新用户注册赠送积分活动 1073905
科研通“疑难数据库(出版商)”最低求助积分说明 957564