Deep Learning for Estimating Lung Capacity on Chest Radiographs Predicts Survival in Idiopathic Pulmonary Fibrosis

医学 射线照相术 回顾性队列研究 特发性肺纤维化 肺功能测试 放射科 肺容积 核医学 内科学
作者
Hyungjin Kim,Kwang Nam Jin,Seung-Jin Yoo,Chang Hoon Lee,Sang‐Min Lee,Hyunsook Hong,Joseph Nathanael Witanto,Soon Ho Yoon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:3
标识
DOI:10.1148/radiol.220292
摘要

Background Total lung capacity (TLC) has been estimated with use of chest radiographs based on time-consuming methods, such as planimetric techniques and manual measurements. Purpose To develop a deep learning-based, multidimensional model capable of estimating TLC from chest radiographs and demographic variables and validate its technical performance and clinical utility with use of multicenter retrospective data sets. Materials and Methods A deep learning model was pretrained with use of 50 000 consecutive chest CT scans performed between January 2015 and June 2017. The model was fine-tuned on 3523 pairs of posteroanterior chest radiographs and plethysmographic TLC measurements from consecutive patients who underwent pulmonary function testing on the same day. The model was tested with multicenter retrospective data sets from two tertiary care centers and one community hospital, including (a) an external test set 1 (n = 207) and external test set 2 (n = 216) for technical performance and (b) patients with idiopathic pulmonary fibrosis (n = 217) for clinical utility. Technical performance was evaluated with use of various agreement measures, and clinical utility was assessed in terms of the prognostic value for overall survival with use of multivariable Cox regression. Results The mean absolute difference and within-subject SD between observed and estimated TLC were 0.69 L and 0.73 L, respectively, in the external test set 1 (161 men; median age, 70 years [IQR: 61-76 years]) and 0.52 L and 0.53 L in the external test set 2 (113 men; median age, 63 years [IQR: 51-70 years]). In patients with idiopathic pulmonary fibrosis (145 men; median age, 67 years [IQR: 61-73 years]), greater estimated TLC percentage was associated with lower mortality risk (adjusted hazard ratio, 0.97 per percent; 95% CI: 0.95, 0.98; P < .001). Conclusion A fully automatic, deep learning-based model estimated total lung capacity from chest radiographs, and the model predicted survival in idiopathic pulmonary fibrosis. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Sorkness in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
青空完成签到 ,获得积分10
2秒前
10发布了新的文献求助10
2秒前
九思发布了新的文献求助10
2秒前
罗大大发布了新的文献求助10
3秒前
小二郎应助ivy采纳,获得10
3秒前
NexusExplorer应助Ghooor采纳,获得10
3秒前
无花果应助体贴电源采纳,获得10
3秒前
3秒前
失眠奇迹发布了新的文献求助10
3秒前
4秒前
脑洞疼应助hearz采纳,获得10
6秒前
苗条的傲丝完成签到,获得积分10
7秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
quhayley应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
加菲丰丰应助科研通管家采纳,获得20
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
桐桐应助西奥采纳,获得10
10秒前
10秒前
苏云墨完成签到 ,获得积分10
11秒前
阮楷瑞发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
13秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919