Deep Learning for Estimating Lung Capacity on Chest Radiographs Predicts Survival in Idiopathic Pulmonary Fibrosis

医学 射线照相术 回顾性队列研究 特发性肺纤维化 肺功能测试 放射科 肺容积 核医学 内科学
作者
Hyungjin Kim,Kwang Nam Jin,Seung-Jin Yoo,Chang Hoon Lee,Sang‐Min Lee,Hyunsook Hong,Joseph Nathanael Witanto,Soon Ho Yoon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:3
标识
DOI:10.1148/radiol.220292
摘要

Background Total lung capacity (TLC) has been estimated with use of chest radiographs based on time-consuming methods, such as planimetric techniques and manual measurements. Purpose To develop a deep learning-based, multidimensional model capable of estimating TLC from chest radiographs and demographic variables and validate its technical performance and clinical utility with use of multicenter retrospective data sets. Materials and Methods A deep learning model was pretrained with use of 50 000 consecutive chest CT scans performed between January 2015 and June 2017. The model was fine-tuned on 3523 pairs of posteroanterior chest radiographs and plethysmographic TLC measurements from consecutive patients who underwent pulmonary function testing on the same day. The model was tested with multicenter retrospective data sets from two tertiary care centers and one community hospital, including (a) an external test set 1 (n = 207) and external test set 2 (n = 216) for technical performance and (b) patients with idiopathic pulmonary fibrosis (n = 217) for clinical utility. Technical performance was evaluated with use of various agreement measures, and clinical utility was assessed in terms of the prognostic value for overall survival with use of multivariable Cox regression. Results The mean absolute difference and within-subject SD between observed and estimated TLC were 0.69 L and 0.73 L, respectively, in the external test set 1 (161 men; median age, 70 years [IQR: 61-76 years]) and 0.52 L and 0.53 L in the external test set 2 (113 men; median age, 63 years [IQR: 51-70 years]). In patients with idiopathic pulmonary fibrosis (145 men; median age, 67 years [IQR: 61-73 years]), greater estimated TLC percentage was associated with lower mortality risk (adjusted hazard ratio, 0.97 per percent; 95% CI: 0.95, 0.98; P < .001). Conclusion A fully automatic, deep learning-based model estimated total lung capacity from chest radiographs, and the model predicted survival in idiopathic pulmonary fibrosis. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Sorkness in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王QQ完成签到 ,获得积分10
刚刚
王凡完成签到 ,获得积分10
1秒前
Lyw完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
WULAVIVA完成签到,获得积分10
5秒前
然来溪完成签到 ,获得积分10
8秒前
仇敌克星完成签到,获得积分10
9秒前
龄仔仔完成签到 ,获得积分10
12秒前
过时的广山完成签到 ,获得积分10
13秒前
秋风之墩完成签到,获得积分10
14秒前
风里等你完成签到,获得积分10
14秒前
和谐诗双完成签到 ,获得积分10
17秒前
Astra完成签到,获得积分10
17秒前
邓大瓜完成签到,获得积分10
17秒前
健忘的晓小完成签到 ,获得积分10
18秒前
19秒前
芬芬完成签到 ,获得积分10
19秒前
19秒前
Loey完成签到,获得积分10
21秒前
AskNature完成签到,获得积分10
21秒前
DrPika完成签到,获得积分10
22秒前
倪小呆完成签到 ,获得积分10
23秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
spicyfish完成签到,获得积分10
26秒前
HopeLee完成签到,获得积分10
26秒前
llllliu发布了新的文献求助10
28秒前
认真的珠完成签到 ,获得积分10
28秒前
宝玉完成签到 ,获得积分10
28秒前
顺利的慕儿完成签到 ,获得积分10
30秒前
留猪完成签到,获得积分10
31秒前
含糊的无声完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
33秒前
萨尔莫斯完成签到,获得积分10
33秒前
35秒前
35秒前
阿连发布了新的文献求助10
35秒前
zm完成签到 ,获得积分10
42秒前
英勇雅琴完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789382
求助须知:如何正确求助?哪些是违规求助? 5718918
关于积分的说明 15474506
捐赠科研通 4917200
什么是DOI,文献DOI怎么找? 2646840
邀请新用户注册赠送积分活动 1594493
关于科研通互助平台的介绍 1548982