Deep Learning for Estimating Lung Capacity on Chest Radiographs Predicts Survival in Idiopathic Pulmonary Fibrosis

医学 射线照相术 回顾性队列研究 特发性肺纤维化 肺功能测试 放射科 肺容积 核医学 内科学
作者
Hyungjin Kim,Kwang Nam Jin,Seung-Jin Yoo,Chang Hoon Lee,Sang‐Min Lee,Hyunsook Hong,Joseph Nathanael Witanto,Soon Ho Yoon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:3
标识
DOI:10.1148/radiol.220292
摘要

Background Total lung capacity (TLC) has been estimated with use of chest radiographs based on time-consuming methods, such as planimetric techniques and manual measurements. Purpose To develop a deep learning-based, multidimensional model capable of estimating TLC from chest radiographs and demographic variables and validate its technical performance and clinical utility with use of multicenter retrospective data sets. Materials and Methods A deep learning model was pretrained with use of 50 000 consecutive chest CT scans performed between January 2015 and June 2017. The model was fine-tuned on 3523 pairs of posteroanterior chest radiographs and plethysmographic TLC measurements from consecutive patients who underwent pulmonary function testing on the same day. The model was tested with multicenter retrospective data sets from two tertiary care centers and one community hospital, including (a) an external test set 1 (n = 207) and external test set 2 (n = 216) for technical performance and (b) patients with idiopathic pulmonary fibrosis (n = 217) for clinical utility. Technical performance was evaluated with use of various agreement measures, and clinical utility was assessed in terms of the prognostic value for overall survival with use of multivariable Cox regression. Results The mean absolute difference and within-subject SD between observed and estimated TLC were 0.69 L and 0.73 L, respectively, in the external test set 1 (161 men; median age, 70 years [IQR: 61-76 years]) and 0.52 L and 0.53 L in the external test set 2 (113 men; median age, 63 years [IQR: 51-70 years]). In patients with idiopathic pulmonary fibrosis (145 men; median age, 67 years [IQR: 61-73 years]), greater estimated TLC percentage was associated with lower mortality risk (adjusted hazard ratio, 0.97 per percent; 95% CI: 0.95, 0.98; P < .001). Conclusion A fully automatic, deep learning-based model estimated total lung capacity from chest radiographs, and the model predicted survival in idiopathic pulmonary fibrosis. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Sorkness in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助橙子采纳,获得10
2秒前
SciGPT应助shinn采纳,获得50
2秒前
3秒前
4秒前
无恙完成签到,获得积分10
5秒前
smottom应助苏打采纳,获得20
6秒前
yanyan发布了新的文献求助10
6秒前
6秒前
7秒前
ZGZ123发布了新的文献求助10
7秒前
7秒前
小蘑菇应助Serena采纳,获得10
8秒前
SciGPT应助Light采纳,获得10
8秒前
ccc完成签到 ,获得积分10
8秒前
9秒前
山月鹿发布了新的文献求助10
10秒前
boen完成签到 ,获得积分10
11秒前
文文发布了新的文献求助10
12秒前
hd完成签到,获得积分10
12秒前
微笑的土豆完成签到,获得积分10
13秒前
13秒前
13秒前
脑洞疼应助H7采纳,获得10
14秒前
Cecilia发布了新的文献求助10
14秒前
李健应助行为艺术家采纳,获得10
15秒前
酷酷含桃发布了新的文献求助10
15秒前
大模型应助Tsui采纳,获得10
16秒前
17秒前
扶桑完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助30
17秒前
dentistx发布了新的文献求助10
18秒前
yanyan完成签到,获得积分10
18秒前
堇笙vv完成签到,获得积分10
18秒前
xxxx完成签到 ,获得积分10
19秒前
小二郎应助onlyan采纳,获得10
19秒前
20秒前
21秒前
21秒前
22秒前
范范完成签到 ,获得积分10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519700
关于积分的说明 11199305
捐赠科研通 3256034
什么是DOI,文献DOI怎么找? 1798049
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305