亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Near-term forecasting of cyanobacteria and harmful algal blooms in lakes using simple univariate methods with satellite remote sensing data

水华 单变量 环境科学 蓝藻 卫星 期限(时间) 时间序列 计算机科学 生态学 浮游植物 多元统计 机器学习 地质学 生物 工程类 营养物 航空航天工程 物理 古生物学 细菌 量子力学
作者
Mark W. Matthews
出处
期刊:Inland Waters [Taylor & Francis]
卷期号:13 (1): 62-73 被引量:4
标识
DOI:10.1080/20442041.2022.2145839
摘要

Near-term forecasting of cyanobacteria and harmful algal blooms (HABs) in lakes is essential to reduce risks to human and animal health and water treatment. Cyanobacteria forecasting models are typically complex, requiring input of biophysical and chemical measurements or DNA sequencing in situ. Satellite imagery presents a unique opportunity to estimate cyanobacteria concentration directly at low cost and over wide spatial and long timescales. This study explores the hypothesis that simple univariate forecasting methods can reliably forecast cyanobacterial blooms in the near-term (1 week ahead) detected using satellite remote sensing. A simple univariate model based on logical decomposition with a moving average and seasonal component was developed to forecast chlorophyll a concentrations from cyanobacteria and algal blooms in lakes using spatially aggregated satellite remotely sensed data. A small test set of 15 spatially distributed waterbodies was used to assess forecast performance on 1-week, 2-week, and 4-week forecast horizons using a year-long hold-out time series. For a 1-week time horizon, cyanobacterial blooms posing a high health risk could be forecast with 80% accuracy. The 2-week and 4-week forecast accuracy dropped to 71% and 69%, respectively. Forecast performance was only weakly influenced by lake size, suggesting that the spatial-aggregation approach may be valid even for large lakes. Additionally, longer time series reduced the observed forecast error, presumably because of better seasonal characterization. This study is the first to demonstrate that simple univariate models with remotely sensed time series can forecast cyanobacteria and HABs with almost the same reliability as complex models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助尔安采纳,获得10
5秒前
cacaldon完成签到,获得积分10
7秒前
22秒前
尔安完成签到,获得积分10
1分钟前
1分钟前
P_Chem完成签到,获得积分10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
2分钟前
ukz37752完成签到,获得积分10
2分钟前
汉堡包应助落泪男孩小胡采纳,获得10
3分钟前
哭泣灯泡完成签到,获得积分10
3分钟前
3分钟前
3分钟前
无花果应助俭朴的滑板采纳,获得10
3分钟前
方宇应助科研通管家采纳,获得10
3分钟前
ruann完成签到 ,获得积分10
3分钟前
qingxinhuo完成签到 ,获得积分10
3分钟前
4分钟前
刘博洋发布了新的文献求助10
4分钟前
研友_VZG7GZ应助刘博洋采纳,获得10
5分钟前
5分钟前
香蕉觅云应助njq采纳,获得10
5分钟前
5分钟前
lanbing802完成签到,获得积分10
5分钟前
5分钟前
刘博洋完成签到,获得积分10
5分钟前
5分钟前
njq发布了新的文献求助10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
无花果应助科研通管家采纳,获得10
5分钟前
JamesPei应助落泪男孩小胡采纳,获得10
5分钟前
widesky777完成签到 ,获得积分10
6分钟前
曾瀚宇完成签到,获得积分10
7分钟前
Chocolat_Chaud完成签到 ,获得积分10
7分钟前
曙光完成签到,获得积分10
9分钟前
JoeJoe完成签到,获得积分10
9分钟前
领导范儿应助威武的蘑菇采纳,获得10
9分钟前
9分钟前
pluto应助JoeJoe采纳,获得10
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
How to Mind Map: The Ultimate Thinking Tool That Will Change Your Life 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700122
求助须知:如何正确求助?哪些是违规求助? 3250581
关于积分的说明 9869505
捐赠科研通 2962422
什么是DOI,文献DOI怎么找? 1624620
邀请新用户注册赠送积分活动 769457
科研通“疑难数据库(出版商)”最低求助积分说明 742312