Deep-Learning Approach to Automatic Identification of Facial Anomalies in Endocrine Disorders

肢端肥大症 医学 内分泌系统 深度学习 内科学 人工智能 内分泌学 生长激素 计算机科学 激素
作者
Wei Ren,Chendan Jiang,Jun Gao,Ping Xu,Debing Zhang,Zhicheng Sun,Xiaohai Liu,Kan Deng,Xinjie Bao,Guoqiang Sun,Yong Yao,Lin Lü,Huijuan Zhu,Renzhi Wang,Ming Feng
出处
期刊:Neuroendocrinology [S. Karger AG]
卷期号:110 (5): 328-337 被引量:24
标识
DOI:10.1159/000502211
摘要

<b><i>Background:</i></b> Deep learning has the potential to assist the medical diagnostic process. We aimed to identify facial anomalies associated with endocrinal disorders using a deep-learning approach to facilitate the process of diagnosis and follow-up. <b><i>Methods:</i></b> We collected facial images of patients with hypercortisolism and acromegaly, and we augmented these images with additional negative samples from public databases. A model with a pretrained deep-learning network was constructed to automatically identify these hypersecretion statuses based on characteristic facial changes. We compared its performance to that of endocrine experts and further investigated key factors upon which the best performing model focused. <b><i>Findings:</i></b> The model achieved areas under the receiver operating characteristic curve of 0.9647 (Cushing’s syndrome) and 0.9556 (acromegaly), accuracies of 0.9593 (Cushing’s syndrome) and 0.9479 (acromegaly), and recalls of 0.7593 (Cushing’s syndrome) and 0.8089 (acromegaly). It performed better than any level of our endocrine experts. Furthermore, the regions of interest on the part of the machine were primarily the same as those upon which the humans focused. <b><i>Interpretation:</i></b> Our findings suggest that the deep-learning model learned the facial characters based merely on labeled data without learning prerequisite medical knowledge, and its performance was comparable with professional medical practitioners. The model has the potential to assist in the diagnosis and follow-up of these hypersecretion statuses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhaoyuemeng发布了新的文献求助10
1秒前
Lucas应助afterly采纳,获得10
1秒前
简单的松鼠关注了科研通微信公众号
1秒前
lalala应助失眠傲白采纳,获得10
1秒前
1秒前
慕青应助西伯侯采纳,获得10
1秒前
1秒前
小纯洁发布了新的文献求助10
2秒前
upon完成签到,获得积分10
2秒前
熊二的蜂蜜罐头完成签到,获得积分10
2秒前
xy完成签到,获得积分10
2秒前
3秒前
shelly发布了新的文献求助10
4秒前
5秒前
6秒前
毛豆应助阿古采纳,获得10
6秒前
6秒前
6秒前
6秒前
无花果应助格局太小采纳,获得10
7秒前
chenmin发布了新的文献求助10
8秒前
8秒前
沃研发布了新的文献求助30
9秒前
心如完成签到 ,获得积分10
9秒前
犹豫路灯发布了新的文献求助10
10秒前
10秒前
spy发布了新的文献求助10
10秒前
11秒前
11秒前
lalala应助小纯洁采纳,获得10
11秒前
12秒前
12秒前
打打应助淡淡的飞雪采纳,获得10
13秒前
燕熙发布了新的文献求助10
14秒前
缓缓矛盾体完成签到,获得积分20
14秒前
css发布了新的文献求助10
14秒前
14秒前
14秒前
hdblk完成签到,获得积分20
14秒前
Orange应助科研通管家采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308920
求助须知:如何正确求助?哪些是违规求助? 2942356
关于积分的说明 8508205
捐赠科研通 2617301
什么是DOI,文献DOI怎么找? 1430043
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649215