Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection

卷积神经网络 计算机科学 人工智能 体素 深度学习 集合(抽象数据类型) 模式识别(心理学) 静息状态功能磁共振成像 机器学习 神经科学 心理学 程序设计语言
作者
Tae‐Eui Kam,Han Zhang,Zhicheng Jiao,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 478-487 被引量:134
标识
DOI:10.1109/tmi.2019.2928790
摘要

While convolutional neural network (CNN) has been demonstrating powerful ability to learn hierarchical spatial features from medical images, it is still difficult to apply it directly to resting-state functional MRI (rs-fMRI) and the derived brain functional networks (BFNs). We propose a novel CNN framework to simultaneously learn embedded features from BFNs for brain disease diagnosis. Since BFNs can be built by considering both static and dynamic functional connectivity (FC), we first decompose rs-fMRI into multiple static BFNs with modified independent component analysis. Then, the voxel-wise variability in dynamic FC is used to quantify BFN dynamics. A set of paired 3D images representing static/dynamic BFNs can be fed into 3D CNNs, from which we can hierarchically and simultaneously learn static/dynamic BFN features. As a result, the dynamic BFN features can complement static BFN features and, at the meantime, different BFNs can help each other toward a joint and better classification. We validate our method with a publicly accessible, large cohort of rs-fMRI dataset in early-stage mild cognitive impairment (eMCI) diagnosis, which is one of the most challenging problems to the clinicians. By comparing with a conventional method, our method shows significant diagnostic performance improvement by almost 10%. This result demonstrates the effectiveness of deep learning in preclinical Alzheimer's disease diagnosis, based on the complex and high-dimensional voxel-wise spatiotemporal patterns of the resting-state brain functional connectomics. The framework provides a new but intuitive way to fully exploit deeply embedded diagnostic features from rs-fMRI for a better-individualized diagnosis of various neurological diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助容止采纳,获得10
1秒前
2秒前
jiujiuwo完成签到,获得积分10
3秒前
Driscoll完成签到 ,获得积分10
3秒前
梨炒栗子完成签到 ,获得积分10
3秒前
林贞宝宝完成签到,获得积分20
4秒前
大妙妙完成签到 ,获得积分10
4秒前
zzzz完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
hcmsaobang2001完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
清爽水彤完成签到 ,获得积分10
9秒前
炙热胡萝卜完成签到 ,获得积分10
9秒前
lcyxdsl完成签到,获得积分10
9秒前
小二郎应助Rena采纳,获得10
10秒前
lcyxdsl发布了新的文献求助10
12秒前
白水完成签到,获得积分10
13秒前
14秒前
容止发布了新的文献求助10
14秒前
Dou993发布了新的文献求助10
16秒前
。。。完成签到,获得积分10
21秒前
24秒前
24秒前
冰冰发布了新的文献求助10
24秒前
脑三问完成签到,获得积分10
25秒前
虚拟的仙人掌完成签到 ,获得积分10
27秒前
传奇3应助漠然采纳,获得10
27秒前
lyj完成签到 ,获得积分10
30秒前
修好世界完成签到,获得积分10
30秒前
Cuddle完成签到 ,获得积分10
31秒前
Rena发布了新的文献求助10
31秒前
铁锤完成签到 ,获得积分10
31秒前
万能图书馆应助。。。采纳,获得10
32秒前
Ryan完成签到,获得积分10
33秒前
Owen应助容止采纳,获得10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461141
求助须知:如何正确求助?哪些是违规求助? 3054904
关于积分的说明 9045352
捐赠科研通 2744780
什么是DOI,文献DOI怎么找? 1505679
科研通“疑难数据库(出版商)”最低求助积分说明 695763
邀请新用户注册赠送积分活动 695189