Constrained Magnetic Resonance Spectroscopic Imaging by Learning Nonlinear Low-Dimensional Models

维数之咒 计算机科学 迭代重建 非线性系统 正规化(语言学) 人工智能 人工神经网络 代表(政治) 磁共振光谱成像 非线性降维 算法 磁共振成像 降维 物理 放射科 政治 医学 法学 量子力学 政治学
作者
Fan Lam,Yahang Li,Xi Peng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (3): 545-555 被引量:47
标识
DOI:10.1109/tmi.2019.2930586
摘要

Magnetic resonance spectroscopic imaging (MRSI) is a powerful molecular imaging modality but has very limited speed, resolution, and SNR tradeoffs.Construction of a low-dimensional model to effectively reduce the dimensionality of the imaging problem has recently shown great promise in improving these tradeoffs.This paper presents a new approach to model and reconstruct the spectroscopic signals by learning a nonlinear low-dimensional representation of the general MR spectra.Specifically, we trained a deep neural network to capture the low-dimensional manifold, where the high-dimensional spectroscopic signals reside.A regularization formulation is proposed to effectively integrate the learned model and physics-based data acquisition model for MRSI reconstruction with the capability to incorporate additional spatiospectral constraints.An efficient numerical algorithm was developed to solve the associated optimization problem involving back-propagating the trained network.Simulation and experimental results were obtained to demonstrate the representation power of the learned model and the ability of the proposed formulation in producing SNR-enhancing reconstruction from the practical MRSI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动路人应助雨天采纳,获得10
1秒前
生动路人应助雨天采纳,获得10
1秒前
小二郎应助雨天采纳,获得10
1秒前
棠堂发布了新的文献求助10
5秒前
5秒前
晚意意意意意完成签到 ,获得积分10
6秒前
机灵的听荷完成签到,获得积分10
9秒前
choiyxh发布了新的文献求助50
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得30
11秒前
今后应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
南丁格尔关注了科研通微信公众号
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得30
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
Rondab应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
华仔应助科研通管家采纳,获得10
12秒前
活泼小刺猬完成签到,获得积分10
13秒前
Qin_YY完成签到,获得积分10
17秒前
FashionBoy应助61采纳,获得10
18秒前
DrW完成签到,获得积分10
18秒前
思源应助十三采纳,获得10
19秒前
语恒完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999076
求助须知:如何正确求助?哪些是违规求助? 3538508
关于积分的说明 11274412
捐赠科研通 3277402
什么是DOI,文献DOI怎么找? 1807554
邀请新用户注册赠送积分活动 883917
科研通“疑难数据库(出版商)”最低求助积分说明 810080