Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density

材料科学 电介质 钛酸钡 聚合物纳米复合材料 复合材料 聚合物 氮化硼 纳米复合材料 陶瓷 光电子学
作者
Jianyong Jiang,Zhonghui Shen,Xingke Cai,Jianfeng Qian,Zhenkang Dan,Yuanhua Lin,Bilu Liu,Ce‐Wen Nan,Long‐Qing Chen,Yang Shen
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:9 (15) 被引量:179
标识
DOI:10.1002/aenm.201803411
摘要

Abstract Poly(vinylidene fluoride) (PVDF) based polymer nanocomposites with high‐permittivity nanofillers exhibit outstanding dielectric energy storage performance due to their high dielectric permittivities and breakdown strength. However, their discharge efficiency is relatively low (usually lower than 70%), which limits their practical applications. Here, polymer nanocomposites with a novel interpenetrating gradient structure are designed and demonstrated by cofilling a PVDF matrix with barium zirconate titanate nanofibers and hexagonal boron nitride nanosheets via modified nonequilibrium processing. The interpenetrating gradient structure is highly effective in breaking the trade‐off between discharge energy density and efficiency of the corresponding nanocomposite, as indicated by the concomitantly enhanced discharge energy density ( U e ≈ 23.4 J cm −3 ) and discharge efficiency (η ≈ 83%). The superior performance is primarily attributed to the rational distribution of nanofillers in the polymer matrix, which raises the height of the potential barrier for charge injection at the dielectric/electrode interface, suppresses electric conduction and contributes to enhanced apparent breakdown strength. Meanwhile, the gradient configuration allows higher volume fraction of high‐permittivity nanofillers without compromising the breakdown strength, leading to higher electric polarization compared with the random configuration. This work provides new opportunities to PVDF‐based polymer nanocomposites with high energy density and discharge efficiency for capacitive energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
basepair完成签到,获得积分10
刚刚
小凡凡完成签到,获得积分10
2秒前
现代的岩完成签到 ,获得积分10
4秒前
阿萨德完成签到,获得积分10
4秒前
思源应助qibing Gu采纳,获得10
4秒前
大模型应助王蓉采纳,获得10
5秒前
Jasper应助overThat采纳,获得10
5秒前
MR_Z完成签到,获得积分10
5秒前
易清华完成签到 ,获得积分10
6秒前
lin完成签到,获得积分10
7秒前
DrKe完成签到,获得积分10
7秒前
Charming完成签到,获得积分10
8秒前
10秒前
elsalili完成签到 ,获得积分10
10秒前
FJXHXQ完成签到,获得积分20
11秒前
huihuiyve完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI2S应助雪儿采纳,获得10
14秒前
15秒前
无心的怜烟完成签到,获得积分10
16秒前
王蓉发布了新的文献求助10
17秒前
嗯嗯发布了新的文献求助10
18秒前
18秒前
万能图书馆应助李丽丽采纳,获得10
18秒前
qibing Gu发布了新的文献求助10
18秒前
小青菜完成签到,获得积分10
19秒前
xiaojcom应助汤博森采纳,获得10
19秒前
我是老大应助汤博森采纳,获得10
19秒前
李爱国应助汤博森采纳,获得10
19秒前
斯文败类应助汤博森采纳,获得10
19秒前
JXDYYZK完成签到,获得积分10
19秒前
20秒前
21秒前
hjkk完成签到,获得积分10
22秒前
整齐小猫咪完成签到,获得积分10
22秒前
你帅你有理完成签到,获得积分10
22秒前
23秒前
郑伟李完成签到,获得积分10
23秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162652
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900951
捐赠科研通 2473107
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175