Model-Based Screening for Robust Estimation in the Presence of Deviations from Linearity in Small Domain Models

离群值 稳健性(进化) 估计员 计算机科学 线性 计量经济学 非参数统计 统计 数学 数据挖掘 生物化学 量子力学 基因 物理 化学
作者
Julie Gershunskaya,Terrance D. Savitsky
出处
期刊:Journal of survey statistics and methodology [Oxford University Press]
卷期号:8 (2): 181-205 被引量:5
标识
DOI:10.1093/jssam/smz004
摘要

Abstract Small domain estimation models, like the Fay-Herriot (FH), often assume a normally distributed latent process centered on a linear mean function. The linearity assumption may be violated for domains that express idiosyncratic phenomena not captured by the predictors. The direct sample estimate for such domain will be viewed as an outlier by FH when, in fact, it reflects an underlying true value. The model interpretation is also confounded by the variances of direct sample estimates because, while typically treated as fixed and known, they are estimates and thus contain noise. In this article, we construct a joint model for the direct estimates and their variances with nonparametric mixtures of normal distributions with the goal to improve robustness in estimation quality for these idiosyncratic domains. We devise a model-based screening tool to nominate domains where the model may not accurately account for deviations from the linearity assumption. We replace the modeled values for nominated domains with the direct estimate which we show robustify our models. The US Bureau of Labor Statistics’ Current Employment Statistics (CES) survey publishes monthly employment estimates for domains defined by industry and geography. Model estimation is performed for smaller domains to improve the reliability of the direct estimator. We compare fit performances for our candidate models under data constructed to be similar to the CES and conduct a simulation study to assess the robustness of our candidate models in the presence of deviations from linearity. We apply our model-based screening method and quantify its ability to improve the quality of published estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Liu完成签到,获得积分20
1秒前
abobo完成签到 ,获得积分10
1秒前
2秒前
4秒前
ysl完成签到,获得积分10
6秒前
狂野的青雪完成签到 ,获得积分10
6秒前
6秒前
哼哼哈嘿发布了新的文献求助10
10秒前
10秒前
无情芝麻发布了新的文献求助10
10秒前
11秒前
Reese完成签到 ,获得积分10
11秒前
wfjsnd发布了新的文献求助50
11秒前
CCLD完成签到,获得积分10
11秒前
13秒前
鲜橙完成签到 ,获得积分10
13秒前
桐桐应助Wshtiiiii采纳,获得10
15秒前
siijjfjjf发布了新的文献求助10
16秒前
16秒前
天天快乐应助科研的POWER采纳,获得10
17秒前
在水一方应助持卿采纳,获得30
17秒前
18秒前
科研通AI5应助潇洒迎夏采纳,获得10
19秒前
20秒前
常常发布了新的文献求助10
20秒前
21秒前
22秒前
FashionBoy应助ZYH采纳,获得10
22秒前
24秒前
有趣的银发布了新的文献求助10
25秒前
25秒前
siijjfjjf完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
小蚊子发布了新的文献求助10
28秒前
迪迪Landy发布了新的文献求助10
29秒前
小灰灰发布了新的文献求助10
30秒前
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727927
求助须知:如何正确求助?哪些是违规求助? 3272991
关于积分的说明 9979382
捐赠科研通 2988370
什么是DOI,文献DOI怎么找? 1639597
邀请新用户注册赠送积分活动 778803
科研通“疑难数据库(出版商)”最低求助积分说明 747817