Model-Based Screening for Robust Estimation in the Presence of Deviations from Linearity in Small Domain Models

离群值 稳健性(进化) 估计员 计算机科学 线性 计量经济学 非参数统计 统计 数学 数据挖掘 生物化学 化学 物理 量子力学 基因
作者
Julie Gershunskaya,Terrance D. Savitsky
出处
期刊:Journal of survey statistics and methodology [Oxford University Press]
卷期号:8 (2): 181-205 被引量:5
标识
DOI:10.1093/jssam/smz004
摘要

Abstract Small domain estimation models, like the Fay-Herriot (FH), often assume a normally distributed latent process centered on a linear mean function. The linearity assumption may be violated for domains that express idiosyncratic phenomena not captured by the predictors. The direct sample estimate for such domain will be viewed as an outlier by FH when, in fact, it reflects an underlying true value. The model interpretation is also confounded by the variances of direct sample estimates because, while typically treated as fixed and known, they are estimates and thus contain noise. In this article, we construct a joint model for the direct estimates and their variances with nonparametric mixtures of normal distributions with the goal to improve robustness in estimation quality for these idiosyncratic domains. We devise a model-based screening tool to nominate domains where the model may not accurately account for deviations from the linearity assumption. We replace the modeled values for nominated domains with the direct estimate which we show robustify our models. The US Bureau of Labor Statistics’ Current Employment Statistics (CES) survey publishes monthly employment estimates for domains defined by industry and geography. Model estimation is performed for smaller domains to improve the reliability of the direct estimator. We compare fit performances for our candidate models under data constructed to be similar to the CES and conduct a simulation study to assess the robustness of our candidate models in the presence of deviations from linearity. We apply our model-based screening method and quantify its ability to improve the quality of published estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助TH采纳,获得10
1秒前
2秒前
2秒前
Vvv发布了新的文献求助10
3秒前
3秒前
我是老大应助花痴的文昊采纳,获得10
3秒前
FashionBoy应助YSL采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Owen应助redamancy采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得20
4秒前
大个应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
迷路翠萱发布了新的文献求助10
6秒前
福禄小金刚完成签到 ,获得积分20
7秒前
万能图书馆应助蔬菜土豆采纳,获得30
7秒前
wuran发布了新的文献求助10
7秒前
7秒前
西门凡双发布了新的文献求助10
7秒前
8秒前
TH完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
孙小博完成签到 ,获得积分10
9秒前
满意雪珊发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940647
求助须知:如何正确求助?哪些是违规求助? 4206748
关于积分的说明 13075495
捐赠科研通 3985361
什么是DOI,文献DOI怎么找? 2182177
邀请新用户注册赠送积分活动 1197793
关于科研通互助平台的介绍 1110088