Model-Based Screening for Robust Estimation in the Presence of Deviations from Linearity in Small Domain Models

离群值 稳健性(进化) 估计员 计算机科学 线性 计量经济学 非参数统计 统计 数学 数据挖掘 生物化学 量子力学 基因 物理 化学
作者
Julie Gershunskaya,Terrance D. Savitsky
出处
期刊:Journal of survey statistics and methodology [Oxford University Press]
卷期号:8 (2): 181-205 被引量:5
标识
DOI:10.1093/jssam/smz004
摘要

Abstract Small domain estimation models, like the Fay-Herriot (FH), often assume a normally distributed latent process centered on a linear mean function. The linearity assumption may be violated for domains that express idiosyncratic phenomena not captured by the predictors. The direct sample estimate for such domain will be viewed as an outlier by FH when, in fact, it reflects an underlying true value. The model interpretation is also confounded by the variances of direct sample estimates because, while typically treated as fixed and known, they are estimates and thus contain noise. In this article, we construct a joint model for the direct estimates and their variances with nonparametric mixtures of normal distributions with the goal to improve robustness in estimation quality for these idiosyncratic domains. We devise a model-based screening tool to nominate domains where the model may not accurately account for deviations from the linearity assumption. We replace the modeled values for nominated domains with the direct estimate which we show robustify our models. The US Bureau of Labor Statistics’ Current Employment Statistics (CES) survey publishes monthly employment estimates for domains defined by industry and geography. Model estimation is performed for smaller domains to improve the reliability of the direct estimator. We compare fit performances for our candidate models under data constructed to be similar to the CES and conduct a simulation study to assess the robustness of our candidate models in the presence of deviations from linearity. We apply our model-based screening method and quantify its ability to improve the quality of published estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
林八八发布了新的文献求助10
2秒前
大力的洪纲完成签到,获得积分10
3秒前
忧郁的寻冬完成签到,获得积分10
3秒前
无私小凡完成签到,获得积分10
4秒前
背后海亦应助端庄亦巧采纳,获得10
4秒前
4秒前
希望天下0贩的0应助伍兹采纳,获得10
4秒前
Aurora-kyt给Aurora-kyt的求助进行了留言
4秒前
张光磊完成签到,获得积分20
4秒前
wanci应助稳重的画板采纳,获得10
4秒前
1259671587发布了新的文献求助10
5秒前
5秒前
萧七七发布了新的文献求助10
5秒前
粉面菜蛋发布了新的文献求助10
5秒前
林夕发布了新的文献求助10
5秒前
6秒前
6秒前
wang完成签到,获得积分10
6秒前
7秒前
7秒前
无私小凡发布了新的文献求助10
7秒前
楚襄谷完成签到 ,获得积分10
7秒前
Yunyunyang发布了新的文献求助10
10秒前
111发布了新的文献求助10
10秒前
tingz发布了新的文献求助10
11秒前
11秒前
13秒前
清萍红檀完成签到,获得积分10
13秒前
haizz发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
kksun完成签到,获得积分10
16秒前
共享精神应助科研通管家采纳,获得100
17秒前
Orange应助科研通管家采纳,获得10
18秒前
柯一一应助迭代跃迁精进采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367