Model-Based Screening for Robust Estimation in the Presence of Deviations from Linearity in Small Domain Models

离群值 稳健性(进化) 估计员 计算机科学 线性 计量经济学 非参数统计 统计 数学 数据挖掘 生物化学 化学 物理 量子力学 基因
作者
Julie Gershunskaya,Terrance D. Savitsky
出处
期刊:Journal of survey statistics and methodology [Oxford University Press]
卷期号:8 (2): 181-205 被引量:5
标识
DOI:10.1093/jssam/smz004
摘要

Abstract Small domain estimation models, like the Fay-Herriot (FH), often assume a normally distributed latent process centered on a linear mean function. The linearity assumption may be violated for domains that express idiosyncratic phenomena not captured by the predictors. The direct sample estimate for such domain will be viewed as an outlier by FH when, in fact, it reflects an underlying true value. The model interpretation is also confounded by the variances of direct sample estimates because, while typically treated as fixed and known, they are estimates and thus contain noise. In this article, we construct a joint model for the direct estimates and their variances with nonparametric mixtures of normal distributions with the goal to improve robustness in estimation quality for these idiosyncratic domains. We devise a model-based screening tool to nominate domains where the model may not accurately account for deviations from the linearity assumption. We replace the modeled values for nominated domains with the direct estimate which we show robustify our models. The US Bureau of Labor Statistics’ Current Employment Statistics (CES) survey publishes monthly employment estimates for domains defined by industry and geography. Model estimation is performed for smaller domains to improve the reliability of the direct estimator. We compare fit performances for our candidate models under data constructed to be similar to the CES and conduct a simulation study to assess the robustness of our candidate models in the presence of deviations from linearity. We apply our model-based screening method and quantify its ability to improve the quality of published estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助tch采纳,获得10
刚刚
咎青文发布了新的文献求助10
2秒前
wyx完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
帆帆帆发布了新的文献求助10
3秒前
仁爱的谷南完成签到,获得积分10
4秒前
4秒前
4秒前
吴旭东完成签到,获得积分10
4秒前
清风完成签到,获得积分10
5秒前
5秒前
田様应助姜且采纳,获得10
7秒前
lili发布了新的文献求助10
8秒前
英勇绮南发布了新的文献求助10
8秒前
8秒前
棉花糖完成签到 ,获得积分10
8秒前
ZhJF完成签到 ,获得积分10
8秒前
王云云完成签到 ,获得积分10
10秒前
天天天蓝发布了新的文献求助10
10秒前
12345发布了新的文献求助10
10秒前
勿昂发布了新的文献求助20
10秒前
Jayce给Jayce的求助进行了留言
11秒前
honey完成签到,获得积分10
11秒前
研友_VZG7GZ应助Jinnnnn采纳,获得10
11秒前
所所应助simon采纳,获得10
11秒前
12秒前
嘉心糖给余烬22的求助进行了留言
12秒前
CipherSage应助材料虎采纳,获得10
12秒前
宋词发布了新的文献求助20
13秒前
13秒前
稚气满满发布了新的文献求助10
13秒前
14秒前
我是谁完成签到,获得积分10
14秒前
xf发布了新的文献求助10
14秒前
14秒前
小龟别乱跑完成签到,获得积分10
14秒前
lili完成签到,获得积分20
16秒前
17秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168924
求助须知:如何正确求助?哪些是违规求助? 2820169
关于积分的说明 7929567
捐赠科研通 2480239
什么是DOI,文献DOI怎么找? 1321290
科研通“疑难数据库(出版商)”最低求助积分说明 633152
版权声明 602497