Model-Based Screening for Robust Estimation in the Presence of Deviations from Linearity in Small Domain Models

离群值 稳健性(进化) 估计员 计算机科学 线性 计量经济学 非参数统计 统计 数学 数据挖掘 生物化学 量子力学 基因 物理 化学
作者
Julie Gershunskaya,Terrance D. Savitsky
出处
期刊:Journal of survey statistics and methodology [Oxford University Press]
卷期号:8 (2): 181-205 被引量:5
标识
DOI:10.1093/jssam/smz004
摘要

Abstract Small domain estimation models, like the Fay-Herriot (FH), often assume a normally distributed latent process centered on a linear mean function. The linearity assumption may be violated for domains that express idiosyncratic phenomena not captured by the predictors. The direct sample estimate for such domain will be viewed as an outlier by FH when, in fact, it reflects an underlying true value. The model interpretation is also confounded by the variances of direct sample estimates because, while typically treated as fixed and known, they are estimates and thus contain noise. In this article, we construct a joint model for the direct estimates and their variances with nonparametric mixtures of normal distributions with the goal to improve robustness in estimation quality for these idiosyncratic domains. We devise a model-based screening tool to nominate domains where the model may not accurately account for deviations from the linearity assumption. We replace the modeled values for nominated domains with the direct estimate which we show robustify our models. The US Bureau of Labor Statistics’ Current Employment Statistics (CES) survey publishes monthly employment estimates for domains defined by industry and geography. Model estimation is performed for smaller domains to improve the reliability of the direct estimator. We compare fit performances for our candidate models under data constructed to be similar to the CES and conduct a simulation study to assess the robustness of our candidate models in the presence of deviations from linearity. We apply our model-based screening method and quantify its ability to improve the quality of published estimates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子完成签到 ,获得积分10
刚刚
小申完成签到,获得积分10
1秒前
1秒前
忧心的不言完成签到,获得积分10
1秒前
风中的碧玉完成签到,获得积分10
2秒前
阿伦艾弗森完成签到,获得积分10
3秒前
科研通AI6.1应助Eden采纳,获得10
3秒前
tuanheqi应助Nara2021采纳,获得50
4秒前
宇文宛菡发布了新的文献求助10
4秒前
刻苦的黑米完成签到,获得积分10
6秒前
6秒前
Ya完成签到 ,获得积分10
7秒前
自觉海冬完成签到,获得积分10
8秒前
搜集达人应助飘逸鑫采纳,获得10
8秒前
10秒前
窗窗窗雨完成签到,获得积分10
10秒前
上官若男应助qigu采纳,获得10
11秒前
lu完成签到 ,获得积分20
11秒前
研友_ZzrNpZ完成签到,获得积分10
11秒前
1376完成签到 ,获得积分10
12秒前
绿豆土豆红豆完成签到 ,获得积分10
12秒前
13秒前
14秒前
zhechen完成签到,获得积分10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
JamesPei应助Yangon采纳,获得10
15秒前
花开花落花无悔完成签到 ,获得积分10
17秒前
17秒前
18秒前
JunHan完成签到,获得积分10
18秒前
lu关注了科研通微信公众号
19秒前
幽壑之潜蛟应助zhu采纳,获得30
20秒前
Rye完成签到,获得积分10
20秒前
小申发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060