计算机科学
推论
数据挖掘
可扩展性
表达式(计算机科学)
人工智能
灵敏度(控制系统)
代表(政治)
贝叶斯概率
聚类分析
噪音(视频)
可视化
生成语法
机器学习
生成模型
数据库
政治
图像(数学)
工程类
程序设计语言
法学
电子工程
政治学
作者
Romain Lopez,Jeffrey Regier,Michael B. Cole,Michael I. Jordan,Nir Yosef
出处
期刊:Nature Methods
[Springer Nature]
日期:2018-11-21
卷期号:15 (12): 1053-1058
被引量:1501
标识
DOI:10.1038/s41592-018-0229-2
摘要
Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task.
科研通智能强力驱动
Strongly Powered by AbleSci AI