双金属片
纳米线
碳化物
材料科学
镍
钼
电催化剂
催化作用
碳纤维
化学工程
电极
纳米技术
金属
电化学
复合数
化学
冶金
复合材料
有机化学
物理化学
工程类
作者
Lixia Guo,Jianying Wang,Xue Tian,Yangyang Liu,Xiaoming He,Zuofeng Chen
出处
期刊:Chemsuschem
[Wiley]
日期:2018-07-12
卷期号:11 (16): 2717-2723
被引量:40
标识
DOI:10.1002/cssc.201801110
摘要
The design and fabrication of noble-metal-free hydrogenevolution electrocatalysts with high activity is significant to future renewable energy systems. In this work, self-supported NiMo carbide nanowires on carbon cloth (Ni3 Mo3 C@NPC NWs/CC; NPC=N,P-doped carbon) were developed through an electropolymerization-assisted procedure. During the synthesis process, NiMoO4 nanowires were first grown on CC through a hydrothermal reaction that was free of any polymer binder such as Nafion. By use of electropolymerization, the as-prepared NiMoO4 NWs/CC sample was then coated by a layer of polypyrole (PPy) that served as the carbon source for subsequent conversion into Ni3 Mo3 C@NPC NWs/CC by carbothermal reduction. The experimental results indicated that judicious choices of the amount of coated PPy and the pyrolysis temperature were essential for obtaining the pure-phase, nanowire array structure of Ni3 Mo3 C@NPC NWs/CC. Benefitting from the pure phase of the bimetallic carbide, the unique architecture of the nanowire array, and its self-supported nature, the optimized Ni3 Mo3 C@NPC NWs/CC electrode exhibited excellent performance in the hydrogen evolution reaction (HER) in both acidic and alkaline media. Low overpotentials of 161 and 215 mV were required to afford a high current density of 100 mA cm-2 toward the HER in acidic and alkaline media, respectively, and the catalytic activity was maintained for at least 48 h, which puts Ni3 Mo3 C@NPC NWs/CC among the best HER electrocatalysts based on metallic carbides yet reported.
科研通智能强力驱动
Strongly Powered by AbleSci AI