Assessment of Motor Impairments in Early Untreated Parkinson's Disease Patients: The Wearable Electronics Impact

可穿戴计算机 物理医学与康复 新颖性 可穿戴技术 医学 运动障碍 疾病 计算机科学 心理学 内科学 嵌入式系统 社会心理学
作者
Mariachiara Ricci,Giulia Di Lazzaro,Antonio Pisani,Nicola Biagio Mercuri,F. Giannini,Giovanni Saggio
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 120-130 被引量:55
标识
DOI:10.1109/jbhi.2019.2903627
摘要

The complex nature of Parkinson's disease (PD) makes difficult to rate its severity, mainly based on the visual inspection of motor impairments. Wearable sensors have been demonstrated to help overcoming such a difficulty, by providing objective measures of motor abnormalities. However, up to now, those sensors have been used on advanced PD patients with evident motor impairment. As a novelty, here we report the impact of wearable sensors in the evaluation of motor abnormalities in newly diagnosed, untreated, namely de novo, patients.A network of wearable sensors was used to measure motor capabilities, in 30 de novo PD patients and 30 healthy subjects, while performing five motor tasks. Measurement data were used to determine motor features useful to highlight impairments and were compared with the corresponding clinical scores. Three classifiers were used to differentiate PD from healthy subjects.Motor features gathered from wearable sensors showed a high degree of significance in discriminating the early untreated de novo PD patients from the healthy subjects, with 95% accuracy. The rates of severity obtained from the measured features are partially in agreement with the clinical scores, with some highlighted, though justified, exceptions.Our findings support the feasibility of adopting wearable sensors in the detection of motor anomalies in early, untreated, PD patients.This work demonstrates that subtle motor impairments, occurring in de novo patients, can be evidenced by means of wearable sensors, providing clinicians with instrumental tools as suitable supports for early diagnosis, and subsequent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
竹园完成签到,获得积分20
1秒前
佳佳发布了新的文献求助10
1秒前
stupid完成签到,获得积分10
2秒前
2秒前
JIAYU完成签到,获得积分10
2秒前
dr_zhangshiyu发布了新的文献求助10
2秒前
3秒前
在雨里思考完成签到 ,获得积分10
3秒前
ccll发布了新的文献求助10
3秒前
烟花应助缥缈剑愁采纳,获得10
3秒前
正直的大树完成签到,获得积分10
3秒前
科研通AI2S应助缥缈剑愁采纳,获得10
3秒前
dzbb应助缥缈剑愁采纳,获得10
4秒前
彭于彦祖应助缥缈剑愁采纳,获得30
4秒前
科研通AI2S应助缥缈剑愁采纳,获得10
4秒前
SciGPT应助缥缈剑愁采纳,获得10
4秒前
dzbb应助缥缈剑愁采纳,获得10
4秒前
过时的沧海完成签到,获得积分10
4秒前
DK发布了新的文献求助10
5秒前
5秒前
竹园发布了新的文献求助10
5秒前
小豪发布了新的文献求助10
5秒前
知昂完成签到 ,获得积分10
8秒前
沉静WT发布了新的文献求助10
9秒前
客念完成签到 ,获得积分10
9秒前
今后应助冷酷的如风采纳,获得30
9秒前
小郭完成签到,获得积分10
10秒前
10秒前
kimi_saigou发布了新的文献求助10
11秒前
DK完成签到,获得积分10
11秒前
Jasper应助小石头采纳,获得10
14秒前
14秒前
15秒前
16秒前
LSS发布了新的文献求助10
17秒前
跳跃如南完成签到,获得积分10
18秒前
Sarah发布了新的文献求助10
18秒前
沉静WT完成签到,获得积分10
19秒前
洛洛发布了新的文献求助20
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706