Assessment of Motor Impairments in Early Untreated Parkinson's Disease Patients: The Wearable Electronics Impact

可穿戴计算机 物理医学与康复 新颖性 可穿戴技术 医学 运动障碍 疾病 计算机科学 心理学 内科学 嵌入式系统 社会心理学
作者
Mariachiara Ricci,Giulia Di Lazzaro,Antonio Pisani,Nicola Biagio Mercuri,F. Giannini,Giovanni Saggio
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 120-130 被引量:55
标识
DOI:10.1109/jbhi.2019.2903627
摘要

The complex nature of Parkinson's disease (PD) makes difficult to rate its severity, mainly based on the visual inspection of motor impairments. Wearable sensors have been demonstrated to help overcoming such a difficulty, by providing objective measures of motor abnormalities. However, up to now, those sensors have been used on advanced PD patients with evident motor impairment. As a novelty, here we report the impact of wearable sensors in the evaluation of motor abnormalities in newly diagnosed, untreated, namely de novo, patients.A network of wearable sensors was used to measure motor capabilities, in 30 de novo PD patients and 30 healthy subjects, while performing five motor tasks. Measurement data were used to determine motor features useful to highlight impairments and were compared with the corresponding clinical scores. Three classifiers were used to differentiate PD from healthy subjects.Motor features gathered from wearable sensors showed a high degree of significance in discriminating the early untreated de novo PD patients from the healthy subjects, with 95% accuracy. The rates of severity obtained from the measured features are partially in agreement with the clinical scores, with some highlighted, though justified, exceptions.Our findings support the feasibility of adopting wearable sensors in the detection of motor anomalies in early, untreated, PD patients.This work demonstrates that subtle motor impairments, occurring in de novo patients, can be evidenced by means of wearable sensors, providing clinicians with instrumental tools as suitable supports for early diagnosis, and subsequent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Milktea123完成签到,获得积分10
2秒前
马博完成签到,获得积分20
2秒前
3秒前
科研通AI2S应助SEM小菜鸡采纳,获得10
6秒前
巫马白亦完成签到,获得积分10
6秒前
嘻嘻哈哈完成签到,获得积分10
7秒前
8秒前
111完成签到,获得积分10
9秒前
10秒前
wu完成签到 ,获得积分10
12秒前
54zxy完成签到,获得积分10
13秒前
蓝天发布了新的文献求助10
13秒前
orixero应助aliime采纳,获得10
14秒前
一米阳光发布了新的文献求助30
14秒前
木子完成签到,获得积分10
14秒前
dorothy_meng完成签到,获得积分10
15秒前
田様应助SEM小菜鸡采纳,获得10
16秒前
聪明钢铁侠完成签到,获得积分10
19秒前
爆米花应助FloppyWow采纳,获得10
21秒前
happystarr完成签到,获得积分10
21秒前
搜集达人应助萤火采纳,获得10
21秒前
22秒前
22秒前
23秒前
25秒前
dengxu发布了新的文献求助10
27秒前
27秒前
钱念波发布了新的文献求助10
28秒前
玛卡巴卡发布了新的文献求助10
28秒前
结实智宸完成签到,获得积分10
30秒前
31秒前
31秒前
sssssss应助yulian采纳,获得10
31秒前
一米阳光完成签到,获得积分10
32秒前
搜集达人应助MRM采纳,获得10
33秒前
表演完成签到,获得积分10
34秒前
所所应助刘莲采纳,获得10
34秒前
小余同学发布了新的文献求助10
34秒前
julio完成签到,获得积分10
35秒前
小王完成签到 ,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174