已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessment of Motor Impairments in Early Untreated Parkinson's Disease Patients: The Wearable Electronics Impact

可穿戴计算机 物理医学与康复 新颖性 可穿戴技术 医学 运动障碍 疾病 计算机科学 心理学 内科学 嵌入式系统 社会心理学
作者
Mariachiara Ricci,Giulia Di Lazzaro,Antonio Pisani,Nicola Biagio Mercuri,F. Giannini,Giovanni Saggio
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 120-130 被引量:55
标识
DOI:10.1109/jbhi.2019.2903627
摘要

The complex nature of Parkinson's disease (PD) makes difficult to rate its severity, mainly based on the visual inspection of motor impairments. Wearable sensors have been demonstrated to help overcoming such a difficulty, by providing objective measures of motor abnormalities. However, up to now, those sensors have been used on advanced PD patients with evident motor impairment. As a novelty, here we report the impact of wearable sensors in the evaluation of motor abnormalities in newly diagnosed, untreated, namely de novo, patients.A network of wearable sensors was used to measure motor capabilities, in 30 de novo PD patients and 30 healthy subjects, while performing five motor tasks. Measurement data were used to determine motor features useful to highlight impairments and were compared with the corresponding clinical scores. Three classifiers were used to differentiate PD from healthy subjects.Motor features gathered from wearable sensors showed a high degree of significance in discriminating the early untreated de novo PD patients from the healthy subjects, with 95% accuracy. The rates of severity obtained from the measured features are partially in agreement with the clinical scores, with some highlighted, though justified, exceptions.Our findings support the feasibility of adopting wearable sensors in the detection of motor anomalies in early, untreated, PD patients.This work demonstrates that subtle motor impairments, occurring in de novo patients, can be evidenced by means of wearable sensors, providing clinicians with instrumental tools as suitable supports for early diagnosis, and subsequent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
基质的寅博完成签到,获得积分10
1秒前
youngyang完成签到 ,获得积分10
1秒前
wlei完成签到,获得积分10
2秒前
芝士奶盖有点咸完成签到 ,获得积分10
4秒前
吃的完成签到,获得积分10
4秒前
山是山三十三完成签到 ,获得积分10
4秒前
6秒前
月出完成签到 ,获得积分10
7秒前
Dan完成签到,获得积分10
10秒前
大方梦秋完成签到,获得积分10
11秒前
12秒前
落寞飞烟完成签到,获得积分10
14秒前
wlscj应助科研兵采纳,获得20
14秒前
乐乐乐乐呀完成签到 ,获得积分10
14秒前
cc应助愉悦采纳,获得10
16秒前
王红红发布了新的文献求助10
17秒前
坚强觅珍完成签到 ,获得积分10
18秒前
布曲完成签到 ,获得积分10
21秒前
GingerF完成签到,获得积分0
25秒前
Ava应助温柔柜子采纳,获得100
27秒前
完美世界应助王红红采纳,获得10
28秒前
GPTea完成签到,获得积分0
28秒前
久晓完成签到 ,获得积分10
29秒前
29秒前
Joeswith完成签到,获得积分10
29秒前
30秒前
31秒前
Oculus完成签到 ,获得积分10
32秒前
神勇的荟完成签到 ,获得积分10
33秒前
纯真沛儿发布了新的文献求助10
34秒前
栗树发布了新的文献求助30
36秒前
yjx发布了新的文献求助10
36秒前
sfwer完成签到,获得积分10
36秒前
626完成签到 ,获得积分20
36秒前
罗QQ完成签到 ,获得积分10
37秒前
38秒前
luming完成签到 ,获得积分10
38秒前
浔初先生完成签到,获得积分10
38秒前
邹随阴发布了新的文献求助10
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253082
求助须知:如何正确求助?哪些是违规求助? 4416579
关于积分的说明 13750145
捐赠科研通 4288834
什么是DOI,文献DOI怎么找? 2353101
邀请新用户注册赠送积分活动 1349865
关于科研通互助平台的介绍 1309581