Iterative Privileged Learning

计算机科学 机器学习 人工智能 功能(生物学) Boosting(机器学习) 背景(考古学) 迭代学习控制 梯度升压 随机森林 进化生物学 生物 古生物学 控制(管理)
作者
Xue Li,Bo Du,Yipeng Zhang,Chang Xu,Dacheng Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 2805-2817 被引量:14
标识
DOI:10.1109/tnnls.2018.2889906
摘要

While in the learning using privileged information paradigm, privileged information may not be as informative as example features in the context of making accurate label predictions, it may be able to provide some effective comments (e.g., the values of the auxiliary function) like a human teacher on the efficacy of the learned model. In a departure from conventional static manipulations of privileged information within the support vector machine framework, this paper investigates iterative privileged learning within the context of gradient boosted decision trees (GBDTs). As the learned model evolves, the comments learned from privileged information to assess the model should also be actively upgraded instead of remaining static and passive. During the learning phase of the GBDT method, new DTs are discovered to enhance the performance of the model, and iteratively update the comments generated from the privileged information to accurately assess and coach the up-to-date model. The resulting objective function can be efficiently solved within the gradient boosting framework. Experimental results on real-world data sets demonstrate the benefits of studying privileged information in an iterative manner, as well as the effectiveness of the proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
luxx发布了新的文献求助10
5秒前
Jeff关注了科研通微信公众号
7秒前
8秒前
xixi应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
戈多应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
gyf应助科研通管家采纳,获得10
10秒前
hehe完成签到 ,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
xixi应助科研通管家采纳,获得10
10秒前
科研通AI6应助懒洋洋采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
共享精神应助帮帮帮蹦采纳,获得10
11秒前
防城港风行天下敷一下头发完成签到 ,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
song发布了新的文献求助10
13秒前
14秒前
16秒前
ICEBLUE完成签到,获得积分10
18秒前
鸠摩智完成签到,获得积分10
19秒前
酷波er应助任燕杰采纳,获得10
20秒前
21秒前
21秒前
21秒前
12完成签到 ,获得积分10
21秒前
科研通AI2S应助踏实汲采纳,获得10
22秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536760
求助须知:如何正确求助?哪些是违规求助? 4624404
关于积分的说明 14591829
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480743
关于科研通互助平台的介绍 1451989